提示词工程(Prompt Engineering)是什么?

一、定义

Prompt Engineering

提示词工程(Prompt Engineering)是一项通过优化提示词(Prompt)和生成策略,从而获得更好的模型返回结果的工程技术。

二、System message 系统指令

System message可以被广泛应用在:

角色扮演:在系统指令中告诉千问你需要它扮演的角色,即可沉浸式和该角色对话交流

语言风格:简单调整LLM的语言风格

任务设定:比如旅行规划,小红书文案助手这样的专项任务处理

回答范围:生成的答案的范围

三、User prompt 用户提示词

  1. 指令:介绍下xxx、xxx是什么、xxx怎么样做
  2. 主要内容:主要内容是指模型正在处理的文本内容。请解释这句英文:"xxxx"。 xxxx是主要内容。
  3. 少样本学习:好的prompt也经常包含一些示例样本(单样本或者少样本)学习,指的是需要加入一些示例的输入和输出对:苹果:红色,香蕉:黄色,桔子:橙色。 黄瓜:?
  4. 善用分隔符 ---
  5. 思维链提示:"做xxx需要考虑以下几个步骤:第一步xxx 第二步xxx..."。这是任务分解(step by step)技术的一种展现,在这种方法中,模型逐步进行思考,并呈现出涉及的步骤,这样做可以降低结果的不准确的可能性,并对模型响应的可解释性有很大的帮助。
  6. 明确的输出内容要求:"按时间顺序罗列xxx"、"按步骤说明xxx"
  7. 输出的格式:"按json格式输出"、"以markdown格式输出"、"以表格形式输出" ...

四、好的原则

  1. 提供上下文
  2. 清晰的指令
  3. 激励模型反思和给出思路:可以在prompt中用一些措辞激励模型给出理由,这样有助于我们更好地分析模型生成结果,同时,思维过程的生成,也有助于其生成更高质量的结果。
  4. 给容错空间:如模型无法完成指定的任务,给模型提供一个备用路径,比如针对文本提问,可以加入如果答案不存在,则回复"无答案"
  5. 让模型给出信息来源:在模型结合搜索或者外部知识库时,要求模型提供他的答案的信息来源,可以帮助LLM的答案减少捏造,并获取到最新的信息。
  6. 说明动机:详细解释你希望模型做这件事情的原因、动机、希望的结果等,这样大模型能更好地理解你的想法,执行需求。

五、提示词框架

system message + user prompt

你希望大模型扮演什么角色,来解决你当前的问题。大模型具有较强的角色扮演能力,相比直接回答往往表现更好。
+ 优质 user prompt,保证输出符合期望。

相关推荐
uncle_ll13 小时前
RAG 系统性能跃迁:LlamaIndex 索引优化实战指南
llm·rag·检索·llamaindex
无名修道院19 小时前
AI大模型微调-LLM、Token、生成与推理详解
llm·token·ai大模型应用开发
bloglin999991 天前
Qwen3-32B报错Invalid json output:{“type“: “1“}For troubleshooting, visit
llm·json
七牛云行业应用1 天前
1M上下文腐烂?实测Opus 4.6 vs GPT-5.3及MoA降本架构源码
人工智能·python·llm·架构设计·gpt-5·claude-opus
蛇皮划水怪1 天前
深入浅出LangChain4J
java·langchain·llm
lili-felicity2 天前
#CANN AIGC文生图轻量推理:Prompt优化算子插件开发
prompt·aigc
猫头虎2 天前
2026年AI产业13大趋势预测:Vibe Coding创作者经济元年到来,占冰强专家解读AIGC未来图景
人工智能·开源·prompt·aigc·ai编程·远程工作·agi
Kiyra2 天前
作为后端开发你不得不知的 AI 知识——Prompt(提示词)
人工智能·prompt
爱喝白开水a2 天前
前端AI自动化测试:brower-use调研让大模型帮你做网页交互与测试
前端·人工智能·大模型·prompt·交互·agent·rag
组合缺一2 天前
Solon AI (Java) v3.9 正式发布:全能 Skill 爆发,Agent 协作更专业!仍然支持 java8!
java·人工智能·ai·llm·agent·solon·mcp