CV12_ONNX转RKNN模型(谛听盒子)

暂时简单整理一下:

1.在边缘设备上配置相关环境。

2.配置完成后,获取模型中间的输入输出结果,保存为npy格式。

3.将onnx格式的模型,以及中间输入输出文件传送到边缘设备上。

4.编写一个python文件用于转换模型格式,dataset作为测试可以是随便的数据。

5.将python传送到边缘设备上并运行。

注意:所有文件要在同一目录下。

参考代码一:

python 复制代码
# Author:SiZhen
# Create: 2024/7/15
# Description: ONNX转RKNN
import os
import numpy as np
from rknn.api import RKNN

def convert_onnx_to_rknn(onnx_path,rknn_path,input_data,output_data):
    #创建RKNN对象
    rknn = RKNN()
    rknn.config(
        target_platforms='rk3588',
        quantized_algorithm='mmse',
        optimization_level = 2
    )
    #加载ONNX模型
    print('loading ONNX model...')
    ret = rknn.load_onnx(model=onnx_path)
    if ret !=0:
        print("load failed!")
        return
    #构建模型,进行RKNN模型转换
    print('building rknn model...')
    ret = rknn.build(do_quantization=False,dataset='/home/DiTing/sizhen/dataset.txt')
    if ret !=0:
        print('Build RKNN model failed!')

    #导出RKNN模型
    print('Exporting RKNN model...')
    ret = rknn.export_rknn(rknn_path)
    if ret != 0:
        print('Export RKNN failed!')
        return
    print('RKNN model is successfully exported to ',rknn_path)

    rknn.init_runtime()
    outputs=rknn.inference(inputs=[input_data],data_format='nchw')
    try:
        if np.test.assert_almost_equal(outputs[0],output_data,decimal=1)is None:
            print('模型输出与预期一致。')
    except AssertionError as e :
        print("不一致,详细信息:",e)

#转换模型
i = 0
onnx_path = r'/home/DiTing/sizhen/resNet34.onnx'
rknn_path = onnx_path.replace('.onnx','.rknn')
input_data = np.load('/home/DiTing/sizhen/input_data.npy')
output_data = np.load('/home/DiTing/sizhen/output_data.npy')
convert_onnx_to_rknn(onnx_path,rknn_path,input_data,output_data)

问题及解决方法

问题一

安装失败。

解决方法:这个地方,谛听盒子应该是arm的版本而不是x86:(Lite版本)

问题二

安装成功找不到属性

解决方法:用如下包替代

问题三

lite版本缺少属性

初步讨论结果:lite版本应该是只包含运行环境的,最好不要在盒子上进行模型转换,会又慢又卡,可能利特版本就是没有模型转换的功能的。

解决方法:在其他环境转换。(待更新)可能的解决办法:https://bbs.eeworld.com.cn/thread-1283146-1-1.html

相关推荐
木头左3 分钟前
基于Backtrader框架的指数期权备兑策略实现与验证
python
乾元3 分钟前
绕过艺术:使用 GANs 对抗 Web 防火墙(WAF)
前端·网络·人工智能·深度学习·安全·架构
蝈蝈tju7 分钟前
Vibe Coding 正确姿势: 先会指挥, 再让AI干
人工智能·经验分享·ai
想你依然心痛12 分钟前
AI 换脸新纪元:Facefusion 人脸融合实战探索
人工智能·换脸·facefusion·人脸融合
李松桃13 分钟前
python第三次作业
java·前端·python
m0_5613596715 分钟前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python
马士兵教育16 分钟前
计算机专业学生入行IT行业,编程语言如何选择?
java·开发语言·c++·人工智能·python
CoderJia程序员甲17 分钟前
GitHub 热榜项目 - 日榜(2026-01-28)
人工智能·ai·大模型·github·ai教程
康谋自动驾驶27 分钟前
高校自动驾驶研究新基建:“实测 - 仿真” 一体化数据采集与验证平台
人工智能·机器学习·自动驾驶·科研·数据采集·时间同步·仿真平台
Ftsom27 分钟前
【6】kilo 上下文管理与压缩机制
人工智能·agent·ai编程·kilo