CV12_ONNX转RKNN模型(谛听盒子)

暂时简单整理一下:

1.在边缘设备上配置相关环境。

2.配置完成后,获取模型中间的输入输出结果,保存为npy格式。

3.将onnx格式的模型,以及中间输入输出文件传送到边缘设备上。

4.编写一个python文件用于转换模型格式,dataset作为测试可以是随便的数据。

5.将python传送到边缘设备上并运行。

注意:所有文件要在同一目录下。

参考代码一:

python 复制代码
# Author:SiZhen
# Create: 2024/7/15
# Description: ONNX转RKNN
import os
import numpy as np
from rknn.api import RKNN

def convert_onnx_to_rknn(onnx_path,rknn_path,input_data,output_data):
    #创建RKNN对象
    rknn = RKNN()
    rknn.config(
        target_platforms='rk3588',
        quantized_algorithm='mmse',
        optimization_level = 2
    )
    #加载ONNX模型
    print('loading ONNX model...')
    ret = rknn.load_onnx(model=onnx_path)
    if ret !=0:
        print("load failed!")
        return
    #构建模型,进行RKNN模型转换
    print('building rknn model...')
    ret = rknn.build(do_quantization=False,dataset='/home/DiTing/sizhen/dataset.txt')
    if ret !=0:
        print('Build RKNN model failed!')

    #导出RKNN模型
    print('Exporting RKNN model...')
    ret = rknn.export_rknn(rknn_path)
    if ret != 0:
        print('Export RKNN failed!')
        return
    print('RKNN model is successfully exported to ',rknn_path)

    rknn.init_runtime()
    outputs=rknn.inference(inputs=[input_data],data_format='nchw')
    try:
        if np.test.assert_almost_equal(outputs[0],output_data,decimal=1)is None:
            print('模型输出与预期一致。')
    except AssertionError as e :
        print("不一致,详细信息:",e)

#转换模型
i = 0
onnx_path = r'/home/DiTing/sizhen/resNet34.onnx'
rknn_path = onnx_path.replace('.onnx','.rknn')
input_data = np.load('/home/DiTing/sizhen/input_data.npy')
output_data = np.load('/home/DiTing/sizhen/output_data.npy')
convert_onnx_to_rknn(onnx_path,rknn_path,input_data,output_data)

问题及解决方法

问题一

安装失败。

解决方法:这个地方,谛听盒子应该是arm的版本而不是x86:(Lite版本)

问题二

安装成功找不到属性

解决方法:用如下包替代

问题三

lite版本缺少属性

初步讨论结果:lite版本应该是只包含运行环境的,最好不要在盒子上进行模型转换,会又慢又卡,可能利特版本就是没有模型转换的功能的。

解决方法:在其他环境转换。(待更新)可能的解决办法:https://bbs.eeworld.com.cn/thread-1283146-1-1.html

相关推荐
小邹子1 分钟前
抑郁症患者数据分析
python·信息可视化·数据分析
AI.NET 极客圈2 分钟前
.NET 原生驾驭 AI 新基建实战系列(四):Qdrant ── 实时高效的向量搜索利器
数据库·人工智能·.net
用户21411832636029 分钟前
dify案例分享--告别手工录入!Dify 工作流批量识别电子发票,5分钟生成Excel表格
前端·人工智能
SweetRetry10 分钟前
前端依赖管理实战:从臃肿到精简的优化之路
前端·人工智能
隐藏用户_y16 分钟前
基于PyCharm推送代码到github实践记录
python
Icoolkj18 分钟前
Komiko 视频到视频功能炸裂上线!
人工智能·音视频
LLM大模型20 分钟前
LangChain篇-提示词工程应用实践
人工智能·程序员·llm
TiAmo zhang22 分钟前
人机融合智能 | “人智交互”跨学科新领域
人工智能
sss191s26 分钟前
校招 Java 面试基础题目解析学习指南含新技术实操要点
java·python·面试
算家计算29 分钟前
6GB显存玩转SD微调!LoRA-scripts本地部署教程,一键炼出专属AI画师
人工智能·开源