深度学习驱动智能超材料设计与应用

在深度学习与超材料融合的背景下,不仅提高了设计的效率和质量,还为实现定制化和精准化的治疗提供了可能,展现了在材料科学领域的巨大潜力。深度学习可以帮助实现超材料结构参数的优化、电磁响应的预测、拓扑结构的自动设计、相位的预测及结构筛选。目前在超材料领域内,深度学习的应用主要集中在以下几个方面:

1.加速设计过程:机器学习可以通过算法快速迭代设计,显著提高设计效率 。

2.逆向设计:通过深度生成模型实现,实现特定功能需求的超材料设计提供了新途径 。

3.智能算法优化:通过遗传算法、Hopfield 网络算法和深度学习在内的智能算法,展现出快速设计和架构创新的优势 。

4.多目标性能优化:机器学习可以处理多目标优化问题,找到满足多性能需求的最佳设计方案 。

5.基于数据的预测模型:基于历史数据预测超材料的性能,为设计提供指导,降本增效。

6.多物理场模拟与优化:结合多物理场模拟,进行超材料的多物理场性能优化设计 。

7.高维度、少样本优化:面临高维度和数据稀疏性问题。通过机器学习算法,实现精准治疗目的的设计。

适合材料科学、机械工程、计算机工程、建筑科学、土木工程、电子工程、航空航天、物理学、自动

化技术等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。

深度学习驱动智能超材料设计与应用

声子超材料与深度学习基本理论

1.1 必要软件安装

1.1.1 Matlab 与 COMSOL 有限元软件

1.1.2 Python 编程语言、集成开发环境与 Tensorflow 深度学习框架

1.2 声子超材料

1.2.1 基本理论

1.2.2 计算方法

1.2.3 实操案例Ⅰ:采用 Matlab 编写传递矩阵法计算一维周期超材料能带曲线

1.2.4 实操案例Ⅱ:采用 COMSOL 计算二维周期超材料能带曲线

1.2.5 实操案例Ⅲ:采用 COMSOL 计算二维周期超材料的频域与时域响应

1.3 深度学习

1.3.1 基本理论

1.3.2 多层感知器(MLP)与卷积神经网络(CNN)

1.3.3 MNIST 手写数字数据集介绍

1.3.4 实操案例Ⅳ:分别采用 MLP 和 CNN 实现手写数字识别

第二章 声子超材料数据批量自动计算方法

2.1 COMSOL with Matlab 介绍

2.2 实操案例Ⅰ:生成用于声子超材料计算的 Matlab 代码

2.3 实操案例Ⅱ:变量为几何/材料参数的声子超材料数据批量自动计算方法

2.3.1 参数变量特征和定义方式

2.3.2 参数变量有限元模型批量自动计算方法

2.4 实操案例Ⅲ:变量为拓扑构型的声子超材料数据批量自动计算方法

2.4.1 拓扑构型特征

2.4.2 自定义拓扑构型生成规则

2.4.3 拓扑构型有限元模型批量自动计算方法

2.5 实操案例Ⅳ:数据集整合

声子超材料的带隙与能带曲线预测

3.1 研究综述

3.2 常用的正向预测深度学习模型

3.2.1 支持向量机(SVM)

3.2.2 多层感知器(MLP)

3.2.3 卷积神经网络(CNN)

3.3 用于带隙与能带曲线预测的数据集介绍

3.3.1 一维周期声子超材料的参数数据集

3.3.2 二维周期声子超材料的拓扑数据集

3.4 实操案例Ⅰ:基于多层感知器的一维周期声子超材料带隙预测

3.4.1 采用 Tensorflow 构建多层感知器

3.4.2 训练与验证

3.4.3 预测性能的评估

3.5 实操案例Ⅱ:基于卷积神经网络的二维周期声子超材料能带曲线预测

3.5.1 采用 Tensorflow 构建卷积神经网络

3.5.2 训练、验证与测试

3.5.3 真实值与测试值对比图的批量生成

一维周期声子超材料的参数设计

4.1 研究综述

4.2 常见的深度学习模型

4.2.1 多层感知器(MLP)4.2.2 多层感知器(MLP)与遗传算法(GA)的结合

4.2.3 串联神经网络(TNN)

4.2.4 其它

4.3 参数设计数据集

4.4 实操案例:基于串联神经网络的一维周期声子超材料参数设计

4.4.1 采用 Tensorflow 搭建串联神经网络

4.4.2 改进的多功能串联神经网络------混联神经网络

4.4.3 参数设计性能评估方法

4.4.4 设计的非唯一性

二维周期声子超材料的拓扑设计

5.1 研究综述

5.2 拓扑设计深度学习模型

5.2.1 条件生成对抗网络(CGAN)

5.2.2 条件变分自动编码器(CVAE)

5.2.3 基于变分自动编码器(VAE)的融合模型

5.3 拓扑设计数据集

5.4 实操案例:基于融合模型的二维周期声子超材料拓扑设计

5.4.1 采用 Tensorflow 搭建变分自动编码器

5.4.2 变分自动编码器生成拓扑构型

5.4.3 基于潜向量的带隙预测

5.4.4 用于拓扑设计的融合模型搭建

5.4.5 拓扑设计性能评估

5.4.6 多目标设计

相关推荐
DKPT44 分钟前
JVM栈溢出和堆溢出哪个先满?
java·开发语言·jvm·笔记·学习
fyakm1 小时前
RNN的注意力机制:原理与实现(代码示例)
rnn·深度学习·神经网络
金井PRATHAMA4 小时前
描述逻辑(Description Logic)对自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Rock_yzh4 小时前
AI学习日记——参数的初始化
人工智能·python·深度学习·学习·机器学习
拆房老料5 小时前
Transformer推理优化全景:从模型架构到硬件底层的深度解析
深度学习·ai·自然语言处理·transformer
CiLerLinux5 小时前
第四十九章 ESP32S3 WiFi 路由实验
网络·人工智能·单片机·嵌入式硬件
七芒星20237 小时前
多目标识别YOLO :YOLOV3 原理
图像处理·人工智能·yolo·计算机视觉·目标跟踪·分类·聚类
今天只学一颗糖7 小时前
Linux学习笔记--insmod 命令
linux·笔记·学习
charlie1145141917 小时前
精读C++20设计模式:行为型设计模式:中介者模式
c++·学习·设计模式·c++20·中介者模式
楼田莉子7 小时前
Qt开发学习——QtCreator深度介绍/程序运行/开发规范/对象树
开发语言·前端·c++·qt·学习