异常检测算法

目录

一、异常检测算法功能:

异常检测算法用来检测数据集中的一些异常样本。

异常检测算法属于非监督模型,即没有明确的标签值。

二、正态(高斯)分布:

使用高斯分布来对数据集中的每个特征进行概率建模,每个特征xi各自生成一个高斯函数

对于特征xi,若输入x,高斯函数计算输出的是该取值x 在特征xi所有训练集值中出现的概率通过概率来检测该取值是否异常,从而判断该样本是否异常。

  • 参数μ(均值)控制分布的中心位置,而参数σ(标准差)控制分布的扁平度。
    • 当μ增大时,高斯分布整体向右平移。
    • 当σ增大时,高斯分布会变得更加扁平。

三、异常检测算法执行过程:

  • 1.选定可能会出现异常的n各特征xi。
  • 2.对每个特征xi单独计算其μ和σ构造高斯函数。
  • 3.输入待检测样本x,将样本的每个特征各自输入相应的高斯函数计算各特征的正常概率。
  • 4.各个特征的概率乘积即为该样本的正常概率。
  • 5.若正常概率小于预设值ε,则表明该样本中的特征值是异常的。

四、如何选择特征:

  • 选择尽量符合高斯分布(钟形曲线)的特征。
  • 对于不符合高斯分布的特征,通过线性或非线性变换将特征变换后的分布符合高斯分布。

五、评估异常检测算法:

尽管异常检测算法是非监督模型,但是我们可以通过引入标签值来进行算法的评估:

对于部分已经确定异常的样本,我们将其标签设为"异常1"。然后将这部分样本划分为测试集和交叉验证集,分别在算法训练时、训练后进行算法预测性能的评估,交叉验证算法还可以调整ε等参数的值。

相关推荐
励志要当大牛的小白菜1 分钟前
ART配对软件使用
开发语言·c++·qt·算法
qq_513970444 分钟前
力扣 hot100 Day56
算法·leetcode
白-胖-子27 分钟前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
PAK向日葵1 小时前
【算法导论】如何攻克一道Hard难度的LeetCode题?以「寻找两个正序数组的中位数」为例
c++·算法·面试
想要成为计算机高手2 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
NeoFii2 小时前
Day 22: 复习
机器学习
静心问道2 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.03 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
爱喝矿泉水的猛男3 小时前
非定长滑动窗口(持续更新)
算法·leetcode·职场和发展
小楓12013 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業