异常检测算法

目录

一、异常检测算法功能:

异常检测算法用来检测数据集中的一些异常样本。

异常检测算法属于非监督模型,即没有明确的标签值。

二、正态(高斯)分布:

使用高斯分布来对数据集中的每个特征进行概率建模,每个特征xi各自生成一个高斯函数

对于特征xi,若输入x,高斯函数计算输出的是该取值x 在特征xi所有训练集值中出现的概率通过概率来检测该取值是否异常,从而判断该样本是否异常。

  • 参数μ(均值)控制分布的中心位置,而参数σ(标准差)控制分布的扁平度。
    • 当μ增大时,高斯分布整体向右平移。
    • 当σ增大时,高斯分布会变得更加扁平。

三、异常检测算法执行过程:

  • 1.选定可能会出现异常的n各特征xi。
  • 2.对每个特征xi单独计算其μ和σ构造高斯函数。
  • 3.输入待检测样本x,将样本的每个特征各自输入相应的高斯函数计算各特征的正常概率。
  • 4.各个特征的概率乘积即为该样本的正常概率。
  • 5.若正常概率小于预设值ε,则表明该样本中的特征值是异常的。

四、如何选择特征:

  • 选择尽量符合高斯分布(钟形曲线)的特征。
  • 对于不符合高斯分布的特征,通过线性或非线性变换将特征变换后的分布符合高斯分布。

五、评估异常检测算法:

尽管异常检测算法是非监督模型,但是我们可以通过引入标签值来进行算法的评估:

对于部分已经确定异常的样本,我们将其标签设为"异常1"。然后将这部分样本划分为测试集和交叉验证集,分别在算法训练时、训练后进行算法预测性能的评估,交叉验证算法还可以调整ε等参数的值。

相关推荐
今天_也很困2 分钟前
牛客2025年愚人节比赛
c++·算法
Joe_Wang54 分钟前
[图论]拓扑排序
数据结构·c++·算法·leetcode·图论·拓扑排序
墨绿色的摆渡人9 分钟前
用 pytorch 从零开始创建大语言模型(三):编码注意力机制
人工智能·pytorch·语言模型
2401_8582861123 分钟前
CD21.【C++ Dev】类和对象(12) 流插入运算符的重载
开发语言·c++·算法·类和对象·运算符重载
zm-v-1593043398626 分钟前
ChatGPT 与 DeepSeek:学术科研的智能 “双引擎”
人工智能·chatgpt
果冻人工智能29 分钟前
美国狂奔,中国稳走,AI赛道上的龟兔之争?
人工智能
果冻人工智能39 分钟前
再谈AI与程序员: AI 写的代码越来越多,那我们还需要开发者吗?
人工智能
大脑探路者43 分钟前
【PyTorch】继承 nn.Module 创建简单神经网络
人工智能·pytorch·神经网络
梭七y1 小时前
【力扣hot100题】(033)合并K个升序链表
算法·leetcode·链表