异常检测算法

目录

一、异常检测算法功能:

异常检测算法用来检测数据集中的一些异常样本。

异常检测算法属于非监督模型,即没有明确的标签值。

二、正态(高斯)分布:

使用高斯分布来对数据集中的每个特征进行概率建模,每个特征xi各自生成一个高斯函数

对于特征xi,若输入x,高斯函数计算输出的是该取值x 在特征xi所有训练集值中出现的概率通过概率来检测该取值是否异常,从而判断该样本是否异常。

  • 参数μ(均值)控制分布的中心位置,而参数σ(标准差)控制分布的扁平度。
    • 当μ增大时,高斯分布整体向右平移。
    • 当σ增大时,高斯分布会变得更加扁平。

三、异常检测算法执行过程:

  • 1.选定可能会出现异常的n各特征xi。
  • 2.对每个特征xi单独计算其μ和σ构造高斯函数。
  • 3.输入待检测样本x,将样本的每个特征各自输入相应的高斯函数计算各特征的正常概率。
  • 4.各个特征的概率乘积即为该样本的正常概率。
  • 5.若正常概率小于预设值ε,则表明该样本中的特征值是异常的。

四、如何选择特征:

  • 选择尽量符合高斯分布(钟形曲线)的特征。
  • 对于不符合高斯分布的特征,通过线性或非线性变换将特征变换后的分布符合高斯分布。

五、评估异常检测算法:

尽管异常检测算法是非监督模型,但是我们可以通过引入标签值来进行算法的评估:

对于部分已经确定异常的样本,我们将其标签设为"异常1"。然后将这部分样本划分为测试集和交叉验证集,分别在算法训练时、训练后进行算法预测性能的评估,交叉验证算法还可以调整ε等参数的值。

相关推荐
量子-Alex5 分钟前
【遥感图像分类】【综述】遥感影像分类:全面综述与应用
人工智能·分类·数据挖掘
张申傲7 分钟前
多模态(3):实战 GPT-4o 视频理解
人工智能·chatgpt·aigc·多模态
阡之尘埃9 分钟前
Python数据分析案例73——基于多种异常值监测算法探查内幕交易信息
人工智能·python·机器学习·数据分析·异常检测·无监督学习
猫先生Mr.Mao17 分钟前
2025年3月AGI技术月评|技术突破重构数字世界底层逻辑
人工智能·aigc·大语言模型·agi·多模态·行业洞察
睿创咨询35 分钟前
科技与商业动态简报
人工智能·科技·ipd·商业
科技在线35 分钟前
科技赋能建筑新未来:中建海龙模块化建筑产品入选中国建筑首批产业化推广产品
大数据·人工智能
雾月5539 分钟前
LeetCode 1292 元素和小于等于阈值的正方形的最大边长
java·数据结构·算法·leetcode·职场和发展
HED1 小时前
用扣子快速手撸人生中第一个AI智能应用!
前端·人工智能
极小狐1 小时前
极狐GitLab 如何 cherry-pick 变更?
人工智能·git·机器学习·gitlab
沛沛老爹1 小时前
从线性到非线性:简单聊聊神经网络的常见三大激活函数
人工智能·深度学习·神经网络·激活函数·relu·sigmoid·tanh