【Pytorch】RNN for Name Classification

参考学习来自:

导入库

python 复制代码
import glob # 用于查找符合规则的文件名
import os
import unicodedata
import string
import torch
import torch.nn as nn
import torch.optim as optim
import random

GPU 配置

python 复制代码
"Device configuration"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

导入数据

python 复制代码
"导入数据"
def findFiles(path):
    return glob.glob(path)


for i in findFiles('./data/names/*.txt'):
    print(i)

output

python 复制代码
./data/names/Korean.txt
./data/names/Irish.txt
./data/names/Portuguese.txt
./data/names/Vietnamese.txt
./data/names/Czech.txt
./data/names/Russian.txt
./data/names/Scottish.txt
./data/names/German.txt
./data/names/Polish.txt
./data/names/Spanish.txt
./data/names/English.txt
./data/names/French.txt
./data/names/Japanese.txt
./data/names/Dutch.txt
./data/names/Greek.txt
./data/names/Chinese.txt
./data/names/Italian.txt
./data/names/Arabic.txt

查看名字所有字符

python 复制代码
all_letters = string.ascii_letters + " .,;'" #所有的字母和标点
print(all_letters)  # abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .,;'


n_letters = len(all_letters)
print(n_letters)  # 57

字符都转化为 ASCII 形式

python 复制代码
# Turn a Unicode string to plain ASCII
# Thanks to https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters
    )
print(unicodeToAscii('Ślusàrski'))  # Slusarski


category_lines = {}  # 每个语言下的名字
all_categories = []  # 保存所有的语言的名字


# 读文件, 返回文件中的每一个
def readLines(filename):
    # 读文件, 去空格, 按换行进行划分
    lines = open(filename, encoding='utf-8').read().strip().split('\n')
    return [unicodeToAscii(line) for line in lines]


# 顺序读取每一个文件, 保存其中的姓名
for filename in findFiles('./data/names/*.txt'):
    # basename返回基础的文件名
    # splitext将文件名和后缀分开
    category = os.path.splitext(os.path.basename(filename))[0]
    all_categories.append(category)
    lines = readLines(filename)
    category_lines[category] = lines


n_categories = len(all_categories)
# 一共有18种语言的名字
print(len(category_lines))  # 18

# 查看某种语言的名字
print(category_lines.keys())
"""
dict_keys(['Korean', 'Irish', 'Portuguese', 'Vietnamese', 'Czech', 'Russian', 'Scottish', 'German', 'Polish', 
'Spanish', 'English', 'French', 'Japanese', 'Dutch', 'Greek', 'Chinese', 'Italian', 'Arabic'])
"""
print(category_lines['English'][:5])  # ['Abbas', 'Abbey', 'Abbott', 'Abdi', 'Abel']

名字转化为 Tensor

python 复制代码
"将Name转为Tensor"
# Find letter index from all_letters, e.g. "a"=0
def letterToIndex(letter):
    # 返回字母在字母表中的位置
    # abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .,;'
    return all_letters.find(letter)

# 将整个名字转为<line_length x 1 x n_letters>
def lineToTensor(line):
    tensor = torch.zeros(len(line), 1, n_letters)
    for li, letter in enumerate(line):
        tensor[li][0][letterToIndex(letter)] = 1
    return tensor


print(lineToTensor('Bryant').shape)  # torch.Size([6, 1, 57])
print(lineToTensor('Mike').shape)  # torch.Size([4, 1, 57])
print(lineToTensor('Mike'))

output

python 复制代码
tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]]])

定义 RNN 分类网络

python 复制代码
"定义网络"
class RNN_NAME(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, layers, batch_size):
        super(RNN_NAME, self).__init__()
        # 这里的input_size相当于是特征的个数, 这里即是所有字母的个数57
        self.input_size = input_size
        # 这里相当于是rnn输出的维数
        self.hidden_size = hidden_size
        # 这里是分类的个数, 这里相当于是18, 一共有18类
        self.output_size = output_size
        # 这里是rnn的层数
        self.layers = layers
        # batchsize的个数
        self.batch_size = batch_size
        self.gru = nn.GRU(input_size = self.input_size, hidden_size = self.hidden_size, num_layers = self.layers)
        self.FC = nn.Linear(self.hidden_size, self.output_size)

    def init_hidden(self):
        return torch.zeros(self.layers, self.batch_size, self.hidden_size).to(device)

    def forward(self, x):
        self.batch_size = x.size(1)
        self.hidden = self.init_hidden() # 初始化memory的内容
        rnn_out, self.hidden = self.gru(x,self.hidden)
        out = self.FC(rnn_out[-1])
        return out

RNN 网络初始化

python 复制代码
"初始化"
layers = 3
input_size = n_letters
hidden_size = 128
output_size = len(all_categories) # 18类
batch_size = 1  # 因为这里name的长度不相同, 所以将batch_size设为1
# 网络初始化
rnn_name = RNN_NAME(input_size, hidden_size, output_size, layers, batch_size).to(device)
# 测试网络输入输出
input_data = lineToTensor('Mike')
out_data = rnn_name(input_data.to(device))
print(out_data.size())
# torch.Size([1, 18])
print(out_data)
"""
tensor([[ 0.0051, -0.0081, -0.0906,  0.1054,  0.0679, -0.0187, -0.0497, -0.0349,
         -0.0466,  0.0004, -0.0099, -0.0940, -0.0201, -0.0694, -0.0542, -0.0807,
          0.0005,  0.1373]], grad_fn=<AddmmBackward0>)
"""

准备训练数据集

python 复制代码
"准备训练数据"
# 打印最后显示的结果

def categoryFromOutput(output):
    top_n, top_i = output.topk(1)
    category_i = top_i[0].item()
    return all_categories[category_i], category_i

# Get a random training example
def randomChoice(l):
    # 随机返回一个l中的分类
    return l[random.randint(0, len(l)-1)]

def randomTrainingExample():
    """随机挑选一种语言的一个名字, 用来产生训练需要的数据
    """
    category = randomChoice(all_categories)  # 随机选一个语言
    line = randomChoice(category_lines[category])  # 随机从这个语言里选一个名字
    category_tensor = torch.tensor([all_categories.index(category)]).long() # 将分类转为Tensor
    line_tensor = lineToTensor(line)  # 将名字转为Tensor
    return category, line, category_tensor, line_tensor

for i in range(10):
    category, line, category_tensor, line_tensor = randomTrainingExample()
    print('category = ', category, '/ line = ', line)
"""
category =  Scottish / line =  Miller
category =  Irish / line =  O'Mooney
category =  Dutch / line =  Kools
category =  French / line =  Bouchard
category =  French / line =  Masson
category =  English / line =  May
category =  Spanish / line =  Holguin
category =  Portuguese / line =  Moreno
category =  Greek / line =  Nomikos
category =  Czech / line =  Cernohous
"""

计算预测精度

python 复制代码
"计算精度"
def get_accuracy(logit, target):
    corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
    accuracy = 100.0 * corrects/batch_size
    return accuracy.item()

网络训练

python 复制代码
"训练"

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(rnn_name.parameters(),lr=0.005)
N_EPHOCS = 100
# 共有20074个数据
n_iters = 2000  # 训练n_iters个名字
print_every = 200  # 每print_every轮打印一次结果, 并传递一次误差, 更新系数
for epoch in range(N_EPHOCS):
    train_running_loss = 0.0
    loss = torch.tensor([0.0]).float().to(device)
    train_count = 0
    rnn_name.train()
    # trainging round
    for iter in range(1, n_iters+1):
        # 获取样本
        category, line, category_tensor, line_tensor = randomTrainingExample()
        category_tensor = category_tensor.to(device)
        line_tensor = line_tensor.to(device)
        # 进行训练
        optimizer.zero_grad()
        # reset hidden states
        rnn_name.hidden = rnn_name.init_hidden()
        # forward+backward+optimize
        outputs = rnn_name(line_tensor)
        guess, guess_i = categoryFromOutput(outputs)
        if guess == category:
            train_count = train_count + 1
        # print(iter)

        loss = loss + criterion(outputs, category_tensor)

        if iter % print_every == 0:
            correct = '✓' if guess == category else '✗ ({})'.format(category)
            print('{} /{} {}'.format(line, guess, correct))
            # 进行反向传播(print_every次传一次误差)
            loss.backward()
            optimizer.step()
            train_running_loss = train_running_loss + loss.detach().item()
            loss = torch.tensor([0.0]).float().to(device)
        # 查看准确率
        train_acc = train_count / n_iters * 100
    print('=======')
    print('Epoch : {:0>2d} | Loss : {:<6.4f} | Train Accuracy : {:<6.2f}%'.format(epoch, train_running_loss/n_iters, train_acc))
    print('=======')

"验证"
test_count = 0
test_num = 500 # 测试500个名字
rnn_name.eval()
for test_iter in range(1, test_num+1):
    category, line, category_tensor, line_tensor = randomTrainingExample()
    outputs = rnn_name(line_tensor.to(device))
    guess, guess_i = categoryFromOutput(outputs)
    if guess == category:
        test_count = test_count + 1
print('Test Accuracy : {:<6.4f}%'.format(test_count/test_num*100))
"""
=======
Epoch : 71 | Loss : 0.2698 | Train Accuracy : 92.35 %
=======
Konda /Japanese ✓
Seighin /Irish ✓
Sedmik /Czech ✓
Jestkov /Russian ✓
So /Korean ✓
Laar /Dutch ✓
Mazza /Italian ✓
Abl /Czech ✓
Doyle /Irish ✓
Skwor /Czech ✓
=======
Epoch : 72 | Loss : 0.2583 | Train Accuracy : 91.40 %
=======
Martoyas /Greek ✗ (Russian)
Hallett /English ✓
Bermudez /Spanish ✓
Bonhomme /French ✓
Lam /Chinese ✗ (Vietnamese)
Kourempes /Greek ✓
Matsuki /Japanese ✓
Sokolofsky /Polish ✓
Kuipers /Dutch ✓
Aller /Dutch ✓
=======
Epoch : 73 | Loss : 0.2564 | Train Accuracy : 91.65 %
=======
Xiao /Chinese ✓
Lian /Chinese ✓
Prill /Czech ✓
Glatter /Czech ✓
Bureau /French ✓
Vallance /French ✗ (English)
Johnstone /Scottish ✓
Kassab /Arabic ✓
Atiyeh /Arabic ✓
Luong /Vietnamese ✓
=======
Epoch : 74 | Loss : 0.2610 | Train Accuracy : 91.60 %
=======
Poirier /French ✓
Hahn /German ✓
Botros /Arabic ✓
Adrichem /Dutch ✓
Rios /Portuguese ✗ (Spanish)
Zangari /Italian ✓
Mccallum /Scottish ✓
Ferro /Portuguese ✓
Kim /Vietnamese ✗ (Korean)
Chang /Korean ✓
=======
Epoch : 75 | Loss : 0.2792 | Train Accuracy : 90.85 %
=======
Monte /Italian ✓
Han /Vietnamese ✗ (Korean)
Ying /Chinese ✓
O'Driscoll /Irish ✓
Poirier /French ✓
Tsuruya /Japanese ✓
Ralph /Czech ✗ (English)
Bonheur /French ✓
Romagna /Italian ✓
Krakowski /Polish ✓
=======
Epoch : 76 | Loss : 0.3000 | Train Accuracy : 90.85 %
=======
Fay /French ✓
Plisek /Czech ✓
Travere /French ✓
Moon /Korean ✓
Aalst /Dutch ✓
Sassa /Japanese ✓
Holzmann /German ✓
Kruessel /Czech ✓
Truong /Vietnamese ✓
Kassab /Arabic ✓
=======
Epoch : 77 | Loss : 0.2602 | Train Accuracy : 92.00 %
=======
Janda /Polish ✓
Doan /Vietnamese ✓
O'Reilly /Irish ✓
Torres /Portuguese ✓
Esipovich /Russian ✓
Johnston /Scottish ✓
Viteri /Spanish ✗ (Italian)
Vandroogenbroeck /Dutch ✓
Montero /Spanish ✓
Wan /Chinese ✓
=======
Epoch : 78 | Loss : 0.2460 | Train Accuracy : 92.35 %
=======
Ha /Korean ✗ (Vietnamese)
Christie /Scottish ✓
Pereira /Portuguese ✓
Kuiper /Dutch ✓
Bautista /Spanish ✓
Takewaki /Japanese ✓
Ying /Chinese ✓
Sokoloff /Polish ✓
Raghailligh /Irish ✓
Edgell /English ✓
=======
Epoch : 79 | Loss : 0.2640 | Train Accuracy : 91.60 %
=======
Neal /English ✓
Kafka /Czech ✓
Hay /Scottish ✓
Pelletier /French ✓
Wilchek /Czech ✓
Marchesi /Italian ✓
Michel /Spanish ✓
Ling /Chinese ✓
Zou /Chinese ✓
Freitas /Portuguese ✓
=======
Epoch : 80 | Loss : 0.2579 | Train Accuracy : 92.60 %
=======
Kelly /Scottish ✓
Chou /Korean ✓
Unsworth /English ✓
Larue /French ✓
Tron /Vietnamese ✓
Herodes /Czech ✓
Fremut /Czech ✓
Thai /Vietnamese ✓
Clark /Irish ✗ (Scottish)
Halenkov /Russian ✓
=======
Epoch : 81 | Loss : 0.2453 | Train Accuracy : 92.40 %
=======
Than /Vietnamese ✓
Pfeifer /Czech ✓
Kennedy /Scottish ✓
Klerkx /Dutch ✓
Freitas /Portuguese ✓
Miller /Scottish ✓
Deeb /Arabic ✓
Almetov /Russian ✓
Li /Korean ✓
Perez /Spanish ✓
=======
Epoch : 82 | Loss : 0.2579 | Train Accuracy : 91.85 %
=======
Horiatis /Greek ✓
Clowes /English ✓
Santos /Portuguese ✓
Mochan /Irish ✓
Sokolof /Polish ✓
Ogterop /Dutch ✓
Schwartz /Czech ✓
Abadi /Arabic ✓
Winogrodzki /Polish ✓
Bazzhin /Russian ✓
=======
Epoch : 83 | Loss : 0.2397 | Train Accuracy : 92.25 %
=======
Ybarra /Spanish ✓
Jacobson /English ✓
Shi /Chinese ✓
Berg /Dutch ✓
Araya /Spanish ✓
Banos /Greek ✓
Winograd /Polish ✓
Schneider /German ✗ (Czech)
Calligaris /Italian ✓
Hasbulatov /Russian ✓
=======
Epoch : 84 | Loss : 0.2466 | Train Accuracy : 92.25 %
=======
Felkerzam /Polish ✗ (Russian)
Gomolka /Polish ✓
Belo /Portuguese ✓
Santos /Portuguese ✓
Rim /Korean ✓
Solomon /French ✓
Agnellutti /Italian ✓
Santana /Portuguese ✓
Ramaker /Dutch ✓
Palmisano /Italian ✓
=======
Epoch : 85 | Loss : 0.2390 | Train Accuracy : 92.80 %
=======
Moraitopoulos /Greek ✓
Rosenberger /German ✓
Torres /Portuguese ✓
Sabbagh /Arabic ✓
Aggelen /Dutch ✓
Chieu /Chinese ✓
Ukhtomsky /Russian ✓
Kouros /Greek ✓
Portyansky /Russian ✓
Dinh /Vietnamese ✓
=======
Epoch : 86 | Loss : 0.2173 | Train Accuracy : 93.15 %
=======
Jaskulski /Polish ✓
Mendez /Spanish ✓
Smyth /English ✓
Mo /Korean ✓
Seegers /Dutch ✓
Elford /English ✓
Lau /Chinese ✓
Sargent /French ✓
Zeman /Czech ✓
Ohme /German ✓
=======
Epoch : 87 | Loss : 0.2189 | Train Accuracy : 93.00 %
=======
Gwang  /Korean ✓
Zhernakov /Russian ✓
Quraishi /Arabic ✓
Asker /Arabic ✓
Franco /Portuguese ✓
Bacon /Czech ✓
Weineltk /Czech ✓
Thuy /Vietnamese ✓
Close /Greek ✓
Xiang /Chinese ✓
=======
Epoch : 88 | Loss : 0.2497 | Train Accuracy : 91.95 %
=======
Basara /Arabic ✓
Esteves /Portuguese ✓
Metz /German ✓
Lopez /Spanish ✓
Bukoski /Polish ✓
Rao /Italian ✓
Klerk /Dutch ✓
Espinoza /Spanish ✓
Wehunt /German ✓
Giehl /German ✓
=======
Epoch : 89 | Loss : 0.2454 | Train Accuracy : 92.70 %
=======
Deniau /French ✓
Bover /Spanish ✗ (Italian)
Soho /Japanese ✓
Ron /Korean ✓
Dolezal /Czech ✓
Yamamura /Japanese ✓
Ramsay /Scottish ✓
Fromm /German ✓
Huerta /Spanish ✓
Colman /Irish ✓
=======
Epoch : 90 | Loss : 0.2432 | Train Accuracy : 92.55 %
=======
Fei /Chinese ✓
Dinh /Vietnamese ✓
Krawiec /Czech ✓
Urbanek /Czech ✓
Yan /Chinese ✓
Giehl /German ✓
Riain /Irish ✓
Zhestkov /Russian ✓
Almetiev /Russian ✓
Deniel /French ✓
=======
Epoch : 91 | Loss : 0.2318 | Train Accuracy : 92.45 %
=======
Macleod /Scottish ✓
Savatier /French ✓
Chong /Chinese ✗ (Korean)
Prchal /Czech ✓
Tsoumada /Greek ✓
Agosti /Italian ✓
Mojjis /Czech ✓
Mitsui /Japanese ✓
San nicolas /Spanish ✓
Kokoris /Greek ✓
=======
Epoch : 92 | Loss : 0.2163 | Train Accuracy : 92.25 %
=======
Marubeni /Japanese ✓
Suh /Korean ✓
Klerks /Dutch ✓
Roma /Spanish ✓
Lac /Vietnamese ✓
Khoury /Arabic ✓
Hoefler /German ✓
Gibson /Scottish ✓
Jasso /Spanish ✓
Oirschotten /Dutch ✓
=======
Epoch : 93 | Loss : 0.2329 | Train Accuracy : 92.90 %
=======
Kikuchi /Japanese ✓
Blecher /German ✓
Ying /Chinese ✓
Nahas /Arabic ✓
Araujo /Portuguese ✓
Koemans /Dutch ✓
Durant /French ✓
Martzenyuk /Russian ✓
Petru /Czech ✓
Wood /Scottish ✓
=======
Epoch : 94 | Loss : 0.2080 | Train Accuracy : 93.35 %
=======
Vespa /Italian ✓
Kowalczyk /Polish ✓
Nahas /Arabic ✓
Tresler /German ✓
Caivano /Italian ✓
Pho /Vietnamese ✓
Dael /Dutch ✓
Heidl /Czech ✓
Totolos /Greek ✓
Adlersflugel /German ✓
=======
Epoch : 95 | Loss : 0.2400 | Train Accuracy : 92.45 %
=======
Zwolenksy /Czech ✓
Chermak /Czech ✓
Sgro /Italian ✓
Lestrange /French ✓
Hwang /Korean ✓
Barros /Spanish ✗ (Portuguese)
Boyle /Scottish ✓
Schmeling /German ✓
Poplawski /Polish ✓
Pantelas /Greek ✓
=======
Epoch : 96 | Loss : 0.2150 | Train Accuracy : 93.10 %
=======
Asher /English ✓
Sai /Vietnamese ✓
Hakimi /Arabic ✓
Sheng /Chinese ✓
Lebedevich /Russian ✓
Castellano /Spanish ✓
Battaglia /Italian ✓
Cardozo /Portuguese ✓
Sinagra /Italian ✓
Bumgarner /German ✓
=======
Epoch : 97 | Loss : 0.2359 | Train Accuracy : 92.80 %
=======
Lyes /English ✓
Do /Vietnamese ✓
Busch /German ✓
Shimura /Japanese ✓
O'Connor /Irish ✓
Geiger /German ✓
Reier /German ✓
Paris /French ✓
Sokolof /Polish ✓
Limarev /Russian ✓
=======
Epoch : 98 | Loss : 0.2369 | Train Accuracy : 92.55 %
=======
Osladil /Czech ✓
Roy /French ✓
Ortega /Spanish ✓
Ruzzier /Italian ✓
Chou /Korean ✓
Mateus /Portuguese ✓
Ibanez /Spanish ✓
Cabello /Spanish ✓
Duguay /French ✓
Yi /Korean ✓
=======
Epoch : 99 | Loss : 0.2192 | Train Accuracy : 92.65 %
=======
Test Accuracy : 94.8000%
"""

精度不足 95%

下面写写测试流程

python 复制代码
"单独测试"
input_data = lineToTensor('WMN').to(device)
out_data = rnn_name(input_data)
print(out_data)
print(categoryFromOutput(out_data))
"""
tensor([[ 5.7034,  1.0659, -8.1210,  0.5218, -2.5818,  0.1362,  7.4420,  3.9547,
          1.0824, -7.2981,  4.0036, -2.2944,  1.6835, -3.5377, -7.6178,  9.8920,
         -0.5789, -1.0545]], device='cuda:0', grad_fn=<AddmmBackward0>)
('Chinese', 15)
"""


input_data = lineToTensor('Huang').to(device)
out_data = rnn_name(input_data)
print(out_data)
print(categoryFromOutput(out_data))
"""
tensor([[ 4.1755, -1.2160, -3.8454,  5.4587, -4.6412,  0.8137,  1.2896,  1.7429,
         -1.3145, -2.1634,  1.0224, -2.7052,  2.1592,  1.1909, -8.0874, 10.2988,
         -1.9252, -0.0729]], device='cuda:0', grad_fn=<AddmmBackward0>)
('Chinese', 15)
"""

完整代码

python 复制代码
import glob # 用于查找符合规则的文件名
import os
import unicodedata
import string
import torch
import torch.nn as nn
import torch.optim as optim
import random


"Device configuration"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


"导入数据"
def findFiles(path):
    return glob.glob(path)


for i in findFiles('./data/names/*.txt'):
    print(i)

"""
./data/names/Korean.txt
./data/names/Irish.txt
./data/names/Portuguese.txt
./data/names/Vietnamese.txt
./data/names/Czech.txt
./data/names/Russian.txt
./data/names/Scottish.txt
./data/names/German.txt
./data/names/Polish.txt
./data/names/Spanish.txt
./data/names/English.txt
./data/names/French.txt
./data/names/Japanese.txt
./data/names/Dutch.txt
./data/names/Greek.txt
./data/names/Chinese.txt
./data/names/Italian.txt
./data/names/Arabic.txt
"""

all_letters = string.ascii_letters + " .,;'" #所有的字母和标点
print(all_letters)  # abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .,;'


n_letters = len(all_letters)
print(n_letters)  # 57


# Turn a Unicode string to plain ASCII
# Thanks to https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters
    )
print(unicodeToAscii('Ślusàrski'))  # Slusarski


category_lines = {}  # 每个语言下的名字
all_categories = []  # 保存所有的语言的名字


# 读文件, 返回文件中的每一个
def readLines(filename):
    # 读文件, 去空格, 按换行进行划分
    lines = open(filename, encoding='utf-8').read().strip().split('\n')
    return [unicodeToAscii(line) for line in lines]


# 顺序读取每一个文件, 保存其中的姓名
for filename in findFiles('./data/names/*.txt'):
    # basename返回基础的文件名
    # splitext将文件名和后缀分开
    category = os.path.splitext(os.path.basename(filename))[0]
    all_categories.append(category)
    lines = readLines(filename)
    category_lines[category] = lines


n_categories = len(all_categories)
# 一共有18种语言的名字
print(len(category_lines))  # 18

# 查看某种语言的名字
print(category_lines.keys())
"""
dict_keys(['Korean', 'Irish', 'Portuguese', 'Vietnamese', 'Czech', 'Russian', 'Scottish', 'German', 'Polish', 
'Spanish', 'English', 'French', 'Japanese', 'Dutch', 'Greek', 'Chinese', 'Italian', 'Arabic'])
"""
print(category_lines['English'][:5])  # ['Abbas', 'Abbey', 'Abbott', 'Abdi', 'Abel']


"将Name转为Tensor"
# Find letter index from all_letters, e.g. "a"=0
def letterToIndex(letter):
    # 返回字母在字母表中的位置
    # abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .,;'
    return all_letters.find(letter)

# 将整个名字转为<line_length x 1 x n_letters>
def lineToTensor(line):
    tensor = torch.zeros(len(line), 1, n_letters)
    for li, letter in enumerate(line):
        tensor[li][0][letterToIndex(letter)] = 1
    return tensor


print(lineToTensor('Bryant').shape)  # torch.Size([6, 1, 57])
print(lineToTensor('Mike').shape)  # torch.Size([4, 1, 57])
print(lineToTensor('Mike'))


"""
tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]]])
"""


"定义网络"
class RNN_NAME(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, layers, batch_size):
        super(RNN_NAME, self).__init__()
        # 这里的input_size相当于是特征的个数, 这里即是所有字母的个数57
        self.input_size = input_size
        # 这里相当于是rnn输出的维数
        self.hidden_size = hidden_size
        # 这里是分类的个数, 这里相当于是18, 一共有18类
        self.output_size = output_size
        # 这里是rnn的层数
        self.layers = layers
        # batchsize的个数
        self.batch_size = batch_size
        self.gru = nn.GRU(input_size = self.input_size, hidden_size = self.hidden_size, num_layers = self.layers)
        self.FC = nn.Linear(self.hidden_size, self.output_size)

    def init_hidden(self):
        return torch.zeros(self.layers, self.batch_size, self.hidden_size).to(device)

    def forward(self, x):
        self.batch_size = x.size(1)
        self.hidden = self.init_hidden() # 初始化memory的内容
        rnn_out, self.hidden = self.gru(x,self.hidden)
        out = self.FC(rnn_out[-1])
        return out


"初始化"
layers = 3
input_size = n_letters
hidden_size = 128
output_size = len(all_categories) # 18类
batch_size = 1  # 因为这里name的长度不相同, 所以将batch_size设为1
# 网络初始化
rnn_name = RNN_NAME(input_size, hidden_size, output_size, layers, batch_size).to(device)
# 测试网络输入输出
input_data = lineToTensor('Mike')
out_data = rnn_name(input_data.to(device))
print(out_data.size())
# torch.Size([1, 18])
print(out_data)
"""
tensor([[ 0.0051, -0.0081, -0.0906,  0.1054,  0.0679, -0.0187, -0.0497, -0.0349,
         -0.0466,  0.0004, -0.0099, -0.0940, -0.0201, -0.0694, -0.0542, -0.0807,
          0.0005,  0.1373]], grad_fn=<AddmmBackward0>)
"""


"准备训练数据"
# 打印最后显示的结果

def categoryFromOutput(output):
    top_n, top_i = output.topk(1)
    category_i = top_i[0].item()
    return all_categories[category_i], category_i

# Get a random training example
def randomChoice(l):
    # 随机返回一个l中的分类
    return l[random.randint(0, len(l)-1)]

def randomTrainingExample():
    """随机挑选一种语言的一个名字, 用来产生训练需要的数据
    """
    category = randomChoice(all_categories)  # 随机选一个语言
    line = randomChoice(category_lines[category])  # 随机从这个语言里选一个名字
    category_tensor = torch.tensor([all_categories.index(category)]).long() # 将分类转为Tensor
    line_tensor = lineToTensor(line)  # 将名字转为Tensor
    return category, line, category_tensor, line_tensor

for i in range(10):
    category, line, category_tensor, line_tensor = randomTrainingExample()
    print('category = ', category, '/ line = ', line)
"""
category =  Scottish / line =  Miller
category =  Irish / line =  O'Mooney
category =  Dutch / line =  Kools
category =  French / line =  Bouchard
category =  French / line =  Masson
category =  English / line =  May
category =  Spanish / line =  Holguin
category =  Portuguese / line =  Moreno
category =  Greek / line =  Nomikos
category =  Czech / line =  Cernohous
"""

"计算精度"
def get_accuracy(logit, target):
    corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
    accuracy = 100.0 * corrects/batch_size
    return accuracy.item()

"训练"

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(rnn_name.parameters(),lr=0.005)
N_EPHOCS = 100
# 共有20074个数据
n_iters = 2000  # 训练n_iters个名字
print_every = 200  # 每print_every轮打印一次结果, 并传递一次误差, 更新系数
for epoch in range(N_EPHOCS):
    train_running_loss = 0.0
    loss = torch.tensor([0.0]).float().to(device)
    train_count = 0
    rnn_name.train()
    # trainging round
    for iter in range(1, n_iters+1):
        # 获取样本
        category, line, category_tensor, line_tensor = randomTrainingExample()
        category_tensor = category_tensor.to(device)
        line_tensor = line_tensor.to(device)
        # 进行训练
        optimizer.zero_grad()
        # reset hidden states
        rnn_name.hidden = rnn_name.init_hidden()
        # forward+backward+optimize
        outputs = rnn_name(line_tensor)
        guess, guess_i = categoryFromOutput(outputs)
        if guess == category:
            train_count = train_count + 1
        # print(iter)

        loss = loss + criterion(outputs, category_tensor)

        if iter % print_every == 0:
            correct = '✓' if guess == category else '✗ ({})'.format(category)
            print('{} /{} {}'.format(line, guess, correct))
            # 进行反向传播(print_every次传一次误差)
            loss.backward()
            optimizer.step()
            train_running_loss = train_running_loss + loss.detach().item()
            loss = torch.tensor([0.0]).float().to(device)
        # 查看准确率
        train_acc = train_count / n_iters * 100
    print('=======')
    print('Epoch : {:0>2d} | Loss : {:<6.4f} | Train Accuracy : {:<6.2f}%'.format(epoch, train_running_loss/n_iters, train_acc))
    print('=======')

"验证"
test_count = 0
test_num = 500 # 测试500个名字
rnn_name.eval()
for test_iter in range(1, test_num+1):
    category, line, category_tensor, line_tensor = randomTrainingExample()
    outputs = rnn_name(line_tensor.to(device))
    guess, guess_i = categoryFromOutput(outputs)
    if guess == category:
        test_count = test_count + 1
print('Test Accuracy : {:<6.4f}%'.format(test_count/test_num*100))
"""
=======
Epoch : 71 | Loss : 0.2698 | Train Accuracy : 92.35 %
=======
Konda /Japanese ✓
Seighin /Irish ✓
Sedmik /Czech ✓
Jestkov /Russian ✓
So /Korean ✓
Laar /Dutch ✓
Mazza /Italian ✓
Abl /Czech ✓
Doyle /Irish ✓
Skwor /Czech ✓
=======
Epoch : 72 | Loss : 0.2583 | Train Accuracy : 91.40 %
=======
Martoyas /Greek ✗ (Russian)
Hallett /English ✓
Bermudez /Spanish ✓
Bonhomme /French ✓
Lam /Chinese ✗ (Vietnamese)
Kourempes /Greek ✓
Matsuki /Japanese ✓
Sokolofsky /Polish ✓
Kuipers /Dutch ✓
Aller /Dutch ✓
=======
Epoch : 73 | Loss : 0.2564 | Train Accuracy : 91.65 %
=======
Xiao /Chinese ✓
Lian /Chinese ✓
Prill /Czech ✓
Glatter /Czech ✓
Bureau /French ✓
Vallance /French ✗ (English)
Johnstone /Scottish ✓
Kassab /Arabic ✓
Atiyeh /Arabic ✓
Luong /Vietnamese ✓
=======
Epoch : 74 | Loss : 0.2610 | Train Accuracy : 91.60 %
=======
Poirier /French ✓
Hahn /German ✓
Botros /Arabic ✓
Adrichem /Dutch ✓
Rios /Portuguese ✗ (Spanish)
Zangari /Italian ✓
Mccallum /Scottish ✓
Ferro /Portuguese ✓
Kim /Vietnamese ✗ (Korean)
Chang /Korean ✓
=======
Epoch : 75 | Loss : 0.2792 | Train Accuracy : 90.85 %
=======
Monte /Italian ✓
Han /Vietnamese ✗ (Korean)
Ying /Chinese ✓
O'Driscoll /Irish ✓
Poirier /French ✓
Tsuruya /Japanese ✓
Ralph /Czech ✗ (English)
Bonheur /French ✓
Romagna /Italian ✓
Krakowski /Polish ✓
=======
Epoch : 76 | Loss : 0.3000 | Train Accuracy : 90.85 %
=======
Fay /French ✓
Plisek /Czech ✓
Travere /French ✓
Moon /Korean ✓
Aalst /Dutch ✓
Sassa /Japanese ✓
Holzmann /German ✓
Kruessel /Czech ✓
Truong /Vietnamese ✓
Kassab /Arabic ✓
=======
Epoch : 77 | Loss : 0.2602 | Train Accuracy : 92.00 %
=======
Janda /Polish ✓
Doan /Vietnamese ✓
O'Reilly /Irish ✓
Torres /Portuguese ✓
Esipovich /Russian ✓
Johnston /Scottish ✓
Viteri /Spanish ✗ (Italian)
Vandroogenbroeck /Dutch ✓
Montero /Spanish ✓
Wan /Chinese ✓
=======
Epoch : 78 | Loss : 0.2460 | Train Accuracy : 92.35 %
=======
Ha /Korean ✗ (Vietnamese)
Christie /Scottish ✓
Pereira /Portuguese ✓
Kuiper /Dutch ✓
Bautista /Spanish ✓
Takewaki /Japanese ✓
Ying /Chinese ✓
Sokoloff /Polish ✓
Raghailligh /Irish ✓
Edgell /English ✓
=======
Epoch : 79 | Loss : 0.2640 | Train Accuracy : 91.60 %
=======
Neal /English ✓
Kafka /Czech ✓
Hay /Scottish ✓
Pelletier /French ✓
Wilchek /Czech ✓
Marchesi /Italian ✓
Michel /Spanish ✓
Ling /Chinese ✓
Zou /Chinese ✓
Freitas /Portuguese ✓
=======
Epoch : 80 | Loss : 0.2579 | Train Accuracy : 92.60 %
=======
Kelly /Scottish ✓
Chou /Korean ✓
Unsworth /English ✓
Larue /French ✓
Tron /Vietnamese ✓
Herodes /Czech ✓
Fremut /Czech ✓
Thai /Vietnamese ✓
Clark /Irish ✗ (Scottish)
Halenkov /Russian ✓
=======
Epoch : 81 | Loss : 0.2453 | Train Accuracy : 92.40 %
=======
Than /Vietnamese ✓
Pfeifer /Czech ✓
Kennedy /Scottish ✓
Klerkx /Dutch ✓
Freitas /Portuguese ✓
Miller /Scottish ✓
Deeb /Arabic ✓
Almetov /Russian ✓
Li /Korean ✓
Perez /Spanish ✓
=======
Epoch : 82 | Loss : 0.2579 | Train Accuracy : 91.85 %
=======
Horiatis /Greek ✓
Clowes /English ✓
Santos /Portuguese ✓
Mochan /Irish ✓
Sokolof /Polish ✓
Ogterop /Dutch ✓
Schwartz /Czech ✓
Abadi /Arabic ✓
Winogrodzki /Polish ✓
Bazzhin /Russian ✓
=======
Epoch : 83 | Loss : 0.2397 | Train Accuracy : 92.25 %
=======
Ybarra /Spanish ✓
Jacobson /English ✓
Shi /Chinese ✓
Berg /Dutch ✓
Araya /Spanish ✓
Banos /Greek ✓
Winograd /Polish ✓
Schneider /German ✗ (Czech)
Calligaris /Italian ✓
Hasbulatov /Russian ✓
=======
Epoch : 84 | Loss : 0.2466 | Train Accuracy : 92.25 %
=======
Felkerzam /Polish ✗ (Russian)
Gomolka /Polish ✓
Belo /Portuguese ✓
Santos /Portuguese ✓
Rim /Korean ✓
Solomon /French ✓
Agnellutti /Italian ✓
Santana /Portuguese ✓
Ramaker /Dutch ✓
Palmisano /Italian ✓
=======
Epoch : 85 | Loss : 0.2390 | Train Accuracy : 92.80 %
=======
Moraitopoulos /Greek ✓
Rosenberger /German ✓
Torres /Portuguese ✓
Sabbagh /Arabic ✓
Aggelen /Dutch ✓
Chieu /Chinese ✓
Ukhtomsky /Russian ✓
Kouros /Greek ✓
Portyansky /Russian ✓
Dinh /Vietnamese ✓
=======
Epoch : 86 | Loss : 0.2173 | Train Accuracy : 93.15 %
=======
Jaskulski /Polish ✓
Mendez /Spanish ✓
Smyth /English ✓
Mo /Korean ✓
Seegers /Dutch ✓
Elford /English ✓
Lau /Chinese ✓
Sargent /French ✓
Zeman /Czech ✓
Ohme /German ✓
=======
Epoch : 87 | Loss : 0.2189 | Train Accuracy : 93.00 %
=======
Gwang  /Korean ✓
Zhernakov /Russian ✓
Quraishi /Arabic ✓
Asker /Arabic ✓
Franco /Portuguese ✓
Bacon /Czech ✓
Weineltk /Czech ✓
Thuy /Vietnamese ✓
Close /Greek ✓
Xiang /Chinese ✓
=======
Epoch : 88 | Loss : 0.2497 | Train Accuracy : 91.95 %
=======
Basara /Arabic ✓
Esteves /Portuguese ✓
Metz /German ✓
Lopez /Spanish ✓
Bukoski /Polish ✓
Rao /Italian ✓
Klerk /Dutch ✓
Espinoza /Spanish ✓
Wehunt /German ✓
Giehl /German ✓
=======
Epoch : 89 | Loss : 0.2454 | Train Accuracy : 92.70 %
=======
Deniau /French ✓
Bover /Spanish ✗ (Italian)
Soho /Japanese ✓
Ron /Korean ✓
Dolezal /Czech ✓
Yamamura /Japanese ✓
Ramsay /Scottish ✓
Fromm /German ✓
Huerta /Spanish ✓
Colman /Irish ✓
=======
Epoch : 90 | Loss : 0.2432 | Train Accuracy : 92.55 %
=======
Fei /Chinese ✓
Dinh /Vietnamese ✓
Krawiec /Czech ✓
Urbanek /Czech ✓
Yan /Chinese ✓
Giehl /German ✓
Riain /Irish ✓
Zhestkov /Russian ✓
Almetiev /Russian ✓
Deniel /French ✓
=======
Epoch : 91 | Loss : 0.2318 | Train Accuracy : 92.45 %
=======
Macleod /Scottish ✓
Savatier /French ✓
Chong /Chinese ✗ (Korean)
Prchal /Czech ✓
Tsoumada /Greek ✓
Agosti /Italian ✓
Mojjis /Czech ✓
Mitsui /Japanese ✓
San nicolas /Spanish ✓
Kokoris /Greek ✓
=======
Epoch : 92 | Loss : 0.2163 | Train Accuracy : 92.25 %
=======
Marubeni /Japanese ✓
Suh /Korean ✓
Klerks /Dutch ✓
Roma /Spanish ✓
Lac /Vietnamese ✓
Khoury /Arabic ✓
Hoefler /German ✓
Gibson /Scottish ✓
Jasso /Spanish ✓
Oirschotten /Dutch ✓
=======
Epoch : 93 | Loss : 0.2329 | Train Accuracy : 92.90 %
=======
Kikuchi /Japanese ✓
Blecher /German ✓
Ying /Chinese ✓
Nahas /Arabic ✓
Araujo /Portuguese ✓
Koemans /Dutch ✓
Durant /French ✓
Martzenyuk /Russian ✓
Petru /Czech ✓
Wood /Scottish ✓
=======
Epoch : 94 | Loss : 0.2080 | Train Accuracy : 93.35 %
=======
Vespa /Italian ✓
Kowalczyk /Polish ✓
Nahas /Arabic ✓
Tresler /German ✓
Caivano /Italian ✓
Pho /Vietnamese ✓
Dael /Dutch ✓
Heidl /Czech ✓
Totolos /Greek ✓
Adlersflugel /German ✓
=======
Epoch : 95 | Loss : 0.2400 | Train Accuracy : 92.45 %
=======
Zwolenksy /Czech ✓
Chermak /Czech ✓
Sgro /Italian ✓
Lestrange /French ✓
Hwang /Korean ✓
Barros /Spanish ✗ (Portuguese)
Boyle /Scottish ✓
Schmeling /German ✓
Poplawski /Polish ✓
Pantelas /Greek ✓
=======
Epoch : 96 | Loss : 0.2150 | Train Accuracy : 93.10 %
=======
Asher /English ✓
Sai /Vietnamese ✓
Hakimi /Arabic ✓
Sheng /Chinese ✓
Lebedevich /Russian ✓
Castellano /Spanish ✓
Battaglia /Italian ✓
Cardozo /Portuguese ✓
Sinagra /Italian ✓
Bumgarner /German ✓
=======
Epoch : 97 | Loss : 0.2359 | Train Accuracy : 92.80 %
=======
Lyes /English ✓
Do /Vietnamese ✓
Busch /German ✓
Shimura /Japanese ✓
O'Connor /Irish ✓
Geiger /German ✓
Reier /German ✓
Paris /French ✓
Sokolof /Polish ✓
Limarev /Russian ✓
=======
Epoch : 98 | Loss : 0.2369 | Train Accuracy : 92.55 %
=======
Osladil /Czech ✓
Roy /French ✓
Ortega /Spanish ✓
Ruzzier /Italian ✓
Chou /Korean ✓
Mateus /Portuguese ✓
Ibanez /Spanish ✓
Cabello /Spanish ✓
Duguay /French ✓
Yi /Korean ✓
=======
Epoch : 99 | Loss : 0.2192 | Train Accuracy : 92.65 %
=======
Test Accuracy : 94.8000%
"""




"单独测试"
input_data = lineToTensor('WMN').to(device)
out_data = rnn_name(input_data)
print(out_data)
print(categoryFromOutput(out_data))
"""
tensor([[ 5.7034,  1.0659, -8.1210,  0.5218, -2.5818,  0.1362,  7.4420,  3.9547,
          1.0824, -7.2981,  4.0036, -2.2944,  1.6835, -3.5377, -7.6178,  9.8920,
         -0.5789, -1.0545]], device='cuda:0', grad_fn=<AddmmBackward0>)
('Chinese', 15)
"""


input_data = lineToTensor('Huang').to(device)
out_data = rnn_name(input_data)
print(out_data)
print(categoryFromOutput(out_data))
"""
tensor([[ 4.1755, -1.2160, -3.8454,  5.4587, -4.6412,  0.8137,  1.2896,  1.7429,
         -1.3145, -2.1634,  1.0224, -2.7052,  2.1592,  1.1909, -8.0874, 10.2988,
         -1.9252, -0.0729]], device='cuda:0', grad_fn=<AddmmBackward0>)
('Chinese', 15)
"""
相关推荐
成富30 分钟前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算43 分钟前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11231 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子1 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing1 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗2 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
2 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_2 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream2 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业