机器学习 | 回归算法原理——多项式回归

Hi,大家好,我是半亩花海。接着上次的最速下降法(梯度下降法)继续更新《白话机器学习的数学》 这本书的学习笔记,在此分享多项式回归这一回归算法原理。本章的回归算法原理基于**《基于广告费预测点击量》**项目,欢迎大家交流学习!

目录

一、多项式回归概述

二、案例分析

[1. 设置问题](#1. 设置问题)

[2. 定义模型](#2. 定义模型)

[3. 多项式回归](#3. 多项式回归)


一、多项式回归概述

多项式回归是一种基于多项式函数的回归分析 方法,用于拟合数据中的非线性关系 。与简单的线性回归不同,多项式回归通过引入多项式项来建模数据的非线性特征,从而提高了模型的灵活性和适用性。


二、案例分析

1. 设置问题

还记得前两节我们定义的用于预测的一次函数吗?

因为是一次函数,所以它的图像是直线。

不过,对于一开始我在图中添加的数据点来说,直线一定是最好的拟合方式吗?曲线拟合的效果会更好吗?

2. 定义模型

通过清晰直观地观察下图,并经过探索我们会发现,其实曲线相对来说会比直线拟合得更好

如此看来,曲线似乎看起来更拟合数据。在此,我们可以把 定义为二次函数,便能用它来表示这条曲线,如下所示:

再或者,用更大次数的表达式也可以。这样就能表示更复杂的曲线了,如下所示:

在找出最合适的表达式之前,需要不断地去尝试。当然这里有个误区,并不是说函数次数越大,拟合得就越好,难免也会出现过拟合的问题(在深度学习中会接触到)。

3. 多项式回归

回到我们定义的二次函数中,我们增加了 这个参数,接下来得需要推导出 更新表达式,和上一节《机器学习 | 回归算法原理------最速下降法(梯度下降法)-CSDN博客》里面的原理一样,用目标函数对 进行偏微分便就能求出来。

,再将 偏微分,求出更新表达式。 微分即 的部分应该和前一节里的求法是一样的,如下式。

所以我们只要求 的微分即可,如下式。

得出最终的参数更新表达式如下所示:

那么即使增加参数,比如有 等,我们依然可以用同样的的方法求出它们的更新表达式。像这样增加函数中多项式的次数 ,然后再使用函数的分析方法(偏微分) 被称为多项式回归

相关推荐
想跑步的小弱鸡2 小时前
Leetcode hot 100(day 3)
算法·leetcode·职场和发展
Uzuki3 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
xyliiiiiL4 小时前
ZGC初步了解
java·jvm·算法
爱的叹息4 小时前
RedisTemplate 的 6 个可配置序列化器属性对比
算法·哈希算法
蹦蹦跳跳真可爱5894 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
独好紫罗兰5 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
每次的天空5 小时前
Android学习总结之算法篇四(字符串)
android·学习·算法
请来次降维打击!!!6 小时前
优选算法系列(5.位运算)
java·前端·c++·算法
qystca6 小时前
蓝桥云客 刷题统计
算法·模拟
别NULL6 小时前
机试题——统计最少媒体包发送源个数
c++·算法·媒体