数学基础【俗说矩阵】:初等矩阵和矩阵的初等行变化关系推导

初等矩阵和矩阵的初等行变换

初等矩阵

  • 矩阵的初等行变换

  • 对单位阵E进行一次初等行变化得到的阵叫做初等阵

这里只能进行一次初等行变换。

置换阵

  • 给矩阵【左乘】一个【置换阵】,相当与对该矩阵进行了一次【置换阵】对应的【置换】初等行变换;

数乘阵

  • 给矩阵【左乘】一个【数乘阵】,相当于对该矩阵进行了一个【数乘阵】对应的【数乘】初等行变换;

倍加阵

  • 给一个矩阵【左乘】一个【倍加阵】,相当于给改矩阵进行了一次【倍加阵】对应的【倍加】初等行变换;

结论:

  • 给矩阵进行一次初等行变化,就相当于对该矩阵左乘了一个对应的初等阵。

初等矩阵与初等行变换的推导关系

初等矩阵与初等行变换的推导过程

一、矩阵A进行一次【数乘】的初等行变化,相当于对矩阵A【左乘】了一个【数乘阵】得到A1。

二、对矩阵A1进行一次【置换】初等行变换,相当于对矩阵A1【左乘】了一个【置换阵】得到A2。把得到A1和得到A2对应的【左乘】的两个【初等阵】进行展开列举。

由于矩阵相乘具备结合律,因此把左侧【左乘】的两个【初等阵】(【数乘阵】和【置换阵】)先相乘,就得到了一个新的矩阵与A相乘,就得到了并A表达的A2。

三、给矩阵A2进行一次【倍加】操作,相当于给矩阵A2【左乘】了一个【倍加阵】得到A3。把刚才得到A2中使用的【左乘】的【初等阵】与现在的【倍加阵】展开列举,并使用结合律进行相乘,就得到了用A表达的A3。

由于矩阵相乘具备结合律,因此把左侧【左乘】的两个【初等阵】(【倍加阵】和得到A2的【初等阵】)先相乘,就得到了一个新的矩阵与A相乘。

四、同样的把矩阵A3进行一次【倍加】初等行变换,就相当于对矩阵A3【左乘】了一个【倍加阵】,得到A4。同时把得到A3的阵和得到A4的【倍加阵】进行展开,借用矩阵的结合律就得到了用A表示的矩阵A4。

五、利用同样的步骤可以得到A5的【左乘】乘法表达和A6的矩阵乘法表达。

A6就是最后的阶梯矩阵。

A5的矩阵乘法表达:

A6的矩阵乘法表达:

初等矩阵与初等行变换的推导结论

  • 矩阵经过据此【初等行变换】成为另一个矩阵,相当于给该矩阵【左乘】一个【行变换矩阵】。
  • 【行变换矩阵】是由若个【初等阵】一次相乘而得到。初等矩阵的内容和顺序对应初等行变换的倒序。
  • 也就是说最开始进行【初等行变换】对应的【初等矩阵】越接近A,越往后的【初等行变换】对应的【初等矩阵】越远离A。
  • 对【单位阵】进行一次【初等行变换】得到的这些【初等阵】具有十分重要的意义,是对后续学习【矩阵求逆】和【LU分解】的重要基础

原学习视频合集链接【俗说矩阵】

相关推荐
惯导马工21 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
隐语SecretFlow2 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo2 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈2 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy2 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
淘小白_TXB21962 天前
头条号矩阵运营经验访谈记录
线性代数·矩阵
九章云极AladdinEdu2 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡2 天前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有2 天前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社3 天前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗