数学基础【俗说矩阵】:初等矩阵和矩阵的初等行变化关系推导

初等矩阵和矩阵的初等行变换

初等矩阵

  • 矩阵的初等行变换

  • 对单位阵E进行一次初等行变化得到的阵叫做初等阵

这里只能进行一次初等行变换。

置换阵

  • 给矩阵【左乘】一个【置换阵】,相当与对该矩阵进行了一次【置换阵】对应的【置换】初等行变换;

数乘阵

  • 给矩阵【左乘】一个【数乘阵】,相当于对该矩阵进行了一个【数乘阵】对应的【数乘】初等行变换;

倍加阵

  • 给一个矩阵【左乘】一个【倍加阵】,相当于给改矩阵进行了一次【倍加阵】对应的【倍加】初等行变换;

结论:

  • 给矩阵进行一次初等行变化,就相当于对该矩阵左乘了一个对应的初等阵。

初等矩阵与初等行变换的推导关系

初等矩阵与初等行变换的推导过程

一、矩阵A进行一次【数乘】的初等行变化,相当于对矩阵A【左乘】了一个【数乘阵】得到A1。

二、对矩阵A1进行一次【置换】初等行变换,相当于对矩阵A1【左乘】了一个【置换阵】得到A2。把得到A1和得到A2对应的【左乘】的两个【初等阵】进行展开列举。

由于矩阵相乘具备结合律,因此把左侧【左乘】的两个【初等阵】(【数乘阵】和【置换阵】)先相乘,就得到了一个新的矩阵与A相乘,就得到了并A表达的A2。

三、给矩阵A2进行一次【倍加】操作,相当于给矩阵A2【左乘】了一个【倍加阵】得到A3。把刚才得到A2中使用的【左乘】的【初等阵】与现在的【倍加阵】展开列举,并使用结合律进行相乘,就得到了用A表达的A3。

由于矩阵相乘具备结合律,因此把左侧【左乘】的两个【初等阵】(【倍加阵】和得到A2的【初等阵】)先相乘,就得到了一个新的矩阵与A相乘。

四、同样的把矩阵A3进行一次【倍加】初等行变换,就相当于对矩阵A3【左乘】了一个【倍加阵】,得到A4。同时把得到A3的阵和得到A4的【倍加阵】进行展开,借用矩阵的结合律就得到了用A表示的矩阵A4。

五、利用同样的步骤可以得到A5的【左乘】乘法表达和A6的矩阵乘法表达。

A6就是最后的阶梯矩阵。

A5的矩阵乘法表达:

A6的矩阵乘法表达:

初等矩阵与初等行变换的推导结论

  • 矩阵经过据此【初等行变换】成为另一个矩阵,相当于给该矩阵【左乘】一个【行变换矩阵】。
  • 【行变换矩阵】是由若个【初等阵】一次相乘而得到。初等矩阵的内容和顺序对应初等行变换的倒序。
  • 也就是说最开始进行【初等行变换】对应的【初等矩阵】越接近A,越往后的【初等行变换】对应的【初等矩阵】越远离A。
  • 对【单位阵】进行一次【初等行变换】得到的这些【初等阵】具有十分重要的意义,是对后续学习【矩阵求逆】和【LU分解】的重要基础

原学习视频合集链接【俗说矩阵】

相关推荐
在路上看风景2 小时前
2.2 列空间和零空间
线性代数
AndrewHZ2 小时前
【图像处理基石】如何使用大模型进行图像处理工作?
图像处理·人工智能·深度学习·算法·llm·stablediffusion·可控性
人邮异步社区3 小时前
如何有效地利用AI辅助编程,提高编程效率?
人工智能·深度学习·ai编程
星星上的吴彦祖3 小时前
多模态感知驱动的人机交互决策研究综述
python·深度学习·计算机视觉·人机交互
全息数据3 小时前
WSL2 中将 Ubuntu 20.04 升级到 22.04 的详细步骤
深度学习·ubuntu·wsl2
java1234_小锋5 小时前
基于Python深度学习的车辆车牌识别系统(PyTorch2卷积神经网络CNN+OpenCV4实现)视频教程 - 自定义字符图片数据集
python·深度学习·cnn·车牌识别
青瓷程序设计6 小时前
植物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
AI即插即用7 小时前
即插即用系列 | CVPR 2025 WPFormer:用于表面缺陷检测的查询式Transformer
人工智能·深度学习·yolo·目标检测·cnn·视觉检测·transformer
前端小L7 小时前
图论专题(十九):DAG上的“关键路径”——极限规划「并行课程 III」
算法·矩阵·深度优先·图论·宽度优先
T0uken7 小时前
【Python】UV:境内的深度学习环境搭建
人工智能·深度学习·uv