Opencv学习项目4——手部跟踪

上一篇博客我们介绍了mediapipe库和对手部进行了检测,这次我们进行手部关键点的连线

代码实现

复制代码
import cv2
import  mediapipe as mp

cap = cv2.VideoCapture(1)
mpHands = mp.solutions.hands
hands = mpHands.Hands()
mpDraw = mp.solutions.drawing_utils

while True:
    success, img = cap.read()
    imgRGB = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    #对RGB图像进行手部检测
    results = hands.process(imgRGB)
    print(results.multi_hand_landmarks)
    #检查是否检测到任何手部关键点
    if results.multi_hand_landmarks:
        #遍历每个检测到的手部
        for handLms in results.multi_hand_landmarks:
            mpDraw.draw_landmarks(img, handLms,mpHands.HAND_CONNECTIONS)
    cv2.imshow("image", img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

效果演示

这样手部关键点和连接线就画好了,有兴趣的可以关注一下,谢谢

相关推荐
qinyia30 分钟前
Wisdom SSH 是一款创新性工具,通过集成 AI 助手,为服务器性能优化带来极大便利。
服务器·人工智能·ssh
昨日之日20063 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
SEO_juper6 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号6 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha6 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云6 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊6 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint6 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
梁小憨憨7 小时前
zotero扩容
人工智能·笔记
大数据张老师7 小时前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构