利用深度学习模型BiLSTM进行数据预测和分析

  1. 导入必要的库和模块:

```python

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Bidirectional, LSTM, Dense

```

  1. 加载数据并准备训练集和测试集:

```python

data = pd.read_excel('c.xlsx').iloc[0:, 1:]

X, y = data.iloc[:, 0:-1], data.iloc[:, -1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, shuffle=False)

```

  1. 缩放特征:

```python

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

```

  1. 构建 BiLSTM 模型并进行训练:

```python

model = Sequential()

model.add(Bidirectional(LSTM(units=64, return_sequences=True), input_shape=(X_train_scaled.shape[1], X_train_scaled.shape[2])))

model.add(Dense(1)) # Regression problems typically have output layer with one neuron

model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(X_train_scaled, y_train, epochs=10, batch_size=32)

```

  1. 在测试集上进行预测并评估模型:

```python

y_pred = model.predict(X_test_scaled)

mse = mean_squared_error(y_test, y_pred)

rmse = np.sqrt(mse)

mae = mean_absolute_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

print("RMSE:", rmse)

print("MAE:", mae)

print("R²:", r2)

```

  1. 绘制拟合对比曲线图:

```python

plt.figure(figsize=(10, 6))

plt.plot(range(len(y_test)), y_test, color='darkorange', label='Actual')

plt.plot(range(len(y_pred)), y_pred, color='navy', linewidth=2, label='Predicted')

plt.xlabel('Sample Index')

plt.ylabel('Target Variable')

plt.title('BiLSTM Regression Fit Comparison')

plt.legend()

plt.grid(True)

plt.show()

```

相关推荐
半导体老登7 分钟前
新能源汽车核心元件揭秘:二极管、三极管结构与工作原理解析(2/2)
人工智能·单片机·嵌入式硬件·汽车
pchmi11 分钟前
CNN常用卷积核
深度学习·神经网络·机器学习·cnn·c#
Orange--Lin23 分钟前
【用deepseek和chatgpt做算法竞赛】——还得DeepSeek来 -Minimum Cost Trees_5
人工智能·算法·chatgpt
范桂飓28 分钟前
大规模 RDMA AI 组网技术创新:算法和可编程硬件的深度融合
人工智能
deflag41 分钟前
第P10周-Pytorch实现车牌号识别
人工智能·pytorch·yolo
pzx_0011 小时前
【机器学习】K折交叉验证(K-Fold Cross-Validation)
人工智能·深度学习·算法·机器学习
海域云赵从友1 小时前
助力DeepSeek私有化部署服务:让企业AI落地更简单、更安全
人工智能·安全
伊一大数据&人工智能学习日志1 小时前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
刀客1231 小时前
python3+TensorFlow 2.x(六)自编码器
人工智能·python·tensorflow
大模型之路2 小时前
Grok-3:人工智能领域的新突破
人工智能·llm·grok-3