利用深度学习模型BiLSTM进行数据预测和分析

  1. 导入必要的库和模块:

```python

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Bidirectional, LSTM, Dense

```

  1. 加载数据并准备训练集和测试集:

```python

data = pd.read_excel('c.xlsx').iloc[0:, 1:]

X, y = data.iloc[:, 0:-1], data.iloc[:, -1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, shuffle=False)

```

  1. 缩放特征:

```python

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

```

  1. 构建 BiLSTM 模型并进行训练:

```python

model = Sequential()

model.add(Bidirectional(LSTM(units=64, return_sequences=True), input_shape=(X_train_scaled.shape[1], X_train_scaled.shape[2])))

model.add(Dense(1)) # Regression problems typically have output layer with one neuron

model.compile(loss='mean_squared_error', optimizer='adam')

model.fit(X_train_scaled, y_train, epochs=10, batch_size=32)

```

  1. 在测试集上进行预测并评估模型:

```python

y_pred = model.predict(X_test_scaled)

mse = mean_squared_error(y_test, y_pred)

rmse = np.sqrt(mse)

mae = mean_absolute_error(y_test, y_pred)

r2 = r2_score(y_test, y_pred)

print("RMSE:", rmse)

print("MAE:", mae)

print("R²:", r2)

```

  1. 绘制拟合对比曲线图:

```python

plt.figure(figsize=(10, 6))

plt.plot(range(len(y_test)), y_test, color='darkorange', label='Actual')

plt.plot(range(len(y_pred)), y_pred, color='navy', linewidth=2, label='Predicted')

plt.xlabel('Sample Index')

plt.ylabel('Target Variable')

plt.title('BiLSTM Regression Fit Comparison')

plt.legend()

plt.grid(True)

plt.show()

```

相关推荐
张较瘦_2 分钟前
[论文阅读] 人工智能 + 软件工程 | Call Me Maybe:用图神经网络增强JavaScript调用图构建
论文阅读·人工智能·软件工程
大模型真好玩2 分钟前
准确率飙升!Graph RAG如何利用知识图谱提升RAG答案质量(四)——微软GraphRAG代码实战
人工智能·python·mcp
Baihai_IDP16 分钟前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
江太翁20 分钟前
Pytorch torch
人工智能·pytorch·python
拓端研究室36 分钟前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
网安INF40 分钟前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
Despacito0o41 分钟前
ESP32-s3摄像头驱动开发实战:从零搭建实时图像显示系统
人工智能·驱动开发·嵌入式硬件·音视频·嵌入式实时数据库
Leinwin43 分钟前
微软发布突破性医疗AI系统
人工智能·microsoft
机器之心44 分钟前
刚刚,Ilya Sutskever宣布自任CEO:联创被Meta挖走了
人工智能