【TVM 教程】在 CUDA 上部署量化模型

更多 TVM 中文文档可访问 →Apache TVM 是一个端到端的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。 | Apache TVM 中文站

作者Wuwei Lin

本文介绍如何用 TVM 自动量化(TVM 的一种量化方式)。有关 TVM 中量化的更多详细信息,参阅 此处。本教程将在 ImageNet 上导入一个 GluonCV 预训练模型到 Relay,量化 Relay 模型,然后执行推理。

复制代码
import tvm
from tvm import te
from tvm import relay
import mxnet as mx
from tvm.contrib.download import download_testdata
from mxnet import gluon
import logging
import os

batch_size = 1
model_name = "resnet18_v1"
target = "cuda"
dev = tvm.device(target)

准备数据集

以下演示如何为量化准备校准数据集,首先下载 ImageNet 的验证集,并对数据集进行预处理。

复制代码
calibration_rec = download_testdata(
 "http://data.mxnet.io.s3-website-us-west-1.amazonaws.com/data/val_256_q90.rec",
 "val_256_q90.rec",
)

def get_val_data(num_workers=4):
    mean_rgb = [123.68, 116.779, 103.939]
    std_rgb = [58.393, 57.12, 57.375]

 def batch_fn(batch):
 return batch.data[0].asnumpy(), batch.label[0].asnumpy()

    img_size = 299 if model_name == "inceptionv3" else 224
    val_data = mx.io.ImageRecordIter(
        path_imgrec=calibration_rec,
        preprocess_threads=num_workers,
        shuffle=False,
        batch_size=batch_size,
        resize=256,
        data_shape=(3, img_size, img_size),
        mean_r=mean_rgb[0],
        mean_g=mean_rgb[1],
        mean_b=mean_rgb[2],
        std_r=std_rgb[0],
        std_g=std_rgb[1],
        std_b=std_rgb[2],
 )
 return val_data, batch_fn

把校准数据集(可迭代对象)定义为 Python 中的生成器对象,本教程仅用几个样本进行校准。

复制代码
calibration_samples = 10

def calibrate_dataset():
    val_data, batch_fn = get_val_data()
    val_data.reset()
 for i, batch in enumerate(val_data):
 if i * batch_size >= calibration_samples:
 break
        data, _ = batch_fn(batch)
 yield {"data": data}

导入模型

用 Relay MxNet 前端从 Gluon 模型集合(model zoo)中导入模型。

复制代码
def get_model():
    gluon_model = gluon.model_zoo.vision.get_model(model_name, pretrained=True)
    img_size = 299 if model_name == "inceptionv3" else 224
    data_shape = (batch_size, 3, img_size, img_size)
    mod, params = relay.frontend.from_mxnet(gluon_model, {"data": data_shape})
 return mod, params

量化模型

量化过程要找到每一层的每个权重和中间特征图(feature map)张量的 scale。

对于权重而言,scales 是根据权重的值直接计算出来的。支持两种模式:power2 和 max。这两种模式都是先找到权重张量内的最大值。在 power2 模式下,最大值向下舍入为 2 的幂。如果权重和中间特征图的 scale 都是 2 的幂,则可以利用移位(bit shifting)进行乘法运算,这使得计算效率更高。在 max 模式下,最大值用作 scale。如果不进行四舍五入,在某些情况下 max 模式可能具有更好的精度。当 scale 不是 2 的幂时,将使用定点乘法。

中间特征图可以通过数据感知量化来找到 scale。数据感知量化将校准数据集作为输入参数,通过最小化量化前后激活分布之间的 KL 散度来计算 scales。或者也可以用预定义的全局 scales,这样可以节省校准时间,但会影响准确性。

复制代码
def quantize(mod, params, data_aware):
 if data_aware:
 with relay.quantize.qconfig(calibrate_mode="kl_divergence", weight_scale="max"):
            mod = relay.quantize.quantize(mod, params, dataset=calibrate_dataset())
 else:
 with relay.quantize.qconfig(calibrate_mode="global_scale", global_scale=8.0):
            mod = relay.quantize.quantize(mod, params)
 return mod

运行推理

创建一个 Relay VM 来构建和执行模型。

复制代码
def run_inference(mod):
    model = relay.create_executor("vm", mod, dev, target).evaluate()
    val_data, batch_fn = get_val_data()
 for i, batch in enumerate(val_data):
        data, label = batch_fn(batch)
        prediction = model(data)
 if i > 10: # 本教程只对几个样本进行推理
 break

def main():
    mod, params = get_model()
    mod = quantize(mod, params, data_aware=True)
    run_inference(mod)

if __name__ == "__main__":
    main()

输出结果:

复制代码
/workspace/python/tvm/driver/build_module.py:268: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, host=target_host) instead.
 "target_host parameter is going to be deprecated. "
/workspace/python/tvm/relay/build_module.py:411: DeprecationWarning: Please use input parameter mod (tvm.IRModule) instead of deprecated parameter mod (tvm.relay.function.Function)
  DeprecationWarning,

脚本总运行时长: (1 分 22.338 秒)

下载 Python 源代码:deploy_quantized.py

下载 Jupyter Notebook:deploy_quantized.ipynb

相关推荐
中科天工19 小时前
智能工厂的投资回报分析是什么?主要包含哪些关键因素?
大数据·人工智能·智能
清风夜半19 小时前
Z-Image-Turbo本地部署(附Mac Windows版教程&源码)
人工智能
前沿观讯19 小时前
2025年医药行业AI排班系统测评:实验室与产线的精准调度
人工智能
SYC_MORE19 小时前
无需 OCR,多模态大模型如何“读懂” PDF?——基于 GLM-4V-Flash 的智能文档解析原理剖析
人工智能·pdf·ocr
正运动技术19 小时前
正运动技术喜获机器人应用典型案例奖!
人工智能·正运动技术·运动控制器·运动控制卡·正运动·机器视觉运动控制一体机
互联网江湖20 小时前
蚂蚁阿福引爆AI健康赛道,美年健康锚定AI健康智能体核心生态位
大数据·人工智能
青稞社区.20 小时前
小米大模型 Plus 团队提出BTL-UI:基于直觉-思考-关联的GUI Agent推理
人工智能·ui
weixin_4029399920 小时前
【大模型】stable-diffusion-3.0和3.5模型训练
深度学习·stable diffusion
MediaTea20 小时前
Python:实例 __dict__ 详解
java·linux·前端·数据库·python
SunnyDays101120 小时前
Python Excel 打印设置全攻略(打印区域、缩放、页边距、页眉页脚等)
python·excel打印设置·excel页面设置·excel打印选项