适用FPGA的小型神经网络(二)

前一篇文章介绍了LeNet和AlexNet是非常适合入门的神经网络,今天稍微进阶一点,复杂一些。

VGG

VGG(Visual Geometry Group)是牛津大学的Karen Simonyan和Andrew Zisserman在挑战2014年的ILSVRC时提出的系列模型。基于模型研究和比赛结果,两人发表了论文《Very Deep Convolutional Networks For Large-Scale Image Recognition》。

https://arxiv.org/abs/1409.1556

VGG的重要意义在于,其研究结果表明增加深度能够提高卷积神经网络的性能。在VGG之后,人们沿着更深层的网络这个方向,取得了一系列新的进展。

vgg16-on-Zynq

https://github.com/flymin/vgg16-on-Zynq

这是 Zynq FPGA 上实现 VGG16 网络的开源项目,项目侧重"实验",适合学习,所有的介绍都是中文的,大家看README就可以了。

PS:CSDN上有篇博文也是这个项目的README,不清楚是不是原作者~

FPGA-Accelerator-for-AES-LeNet-VGG16

https://github.com/zhan6841/FPGA-Accelerator-for-AES-LeNet-VGG16

这个是AES-LeNet-VGG16三个项目的集合体,项目没有介绍,但是不清楚是原作者还是收集的项目,每个项目文件夹下是有相关的设计文档的:

同时,该项目给了一个网址:

http://www.aoki.ecei.tohoku.ac.jp/crypto/web/cores.html

该网址给了几个比较实用的IP核源码,包括片上毛刺时钟发生器、RSA系列、JWIS2007、AES等,还有一些大家自己去看吧,除了源码和仿真文件外还有一些设计文档。

CNN_VGG19

这个项目实际上不是一个可训练的模型,只是 VGG19 的重建,用于对输入图像进行预测。

https://github.com/romulus0914/CNN_VGG19_verilog
https://github.com/18521449/Image-Classification-use-VGG16
https://github.com/PhanQuocLinh/Project_VGG16

总结

除了LeNet外很少有在FPGA上直接应用的项目了,基本都是实现各个神经网络的核心部分,应用大部分都是基于OpenVINO或者DPU的例子。这部分原因都在于时间和稳定性,后面的案例或者实例相对较少,会以理论项目为基础。

相关推荐
余炜yw23 分钟前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
莫叫石榴姐40 分钟前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
967742 分钟前
对抗样本存在的原因
深度学习
如若1231 小时前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr1 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner1 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
Guofu_Liao1 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama
我爱学Python!1 小时前
大语言模型与图结构的融合: 推荐系统中的新兴范式
人工智能·语言模型·自然语言处理·langchain·llm·大语言模型·推荐系统
果冻人工智能2 小时前
OpenAI 是怎么“压力测试”大型语言模型的?
人工智能·语言模型·压力测试
日出等日落2 小时前
Windows电脑本地部署llamafile并接入Qwen大语言模型远程AI对话实战
人工智能·语言模型·自然语言处理