适用FPGA的小型神经网络(二)

前一篇文章介绍了LeNet和AlexNet是非常适合入门的神经网络,今天稍微进阶一点,复杂一些。

VGG

VGG(Visual Geometry Group)是牛津大学的Karen Simonyan和Andrew Zisserman在挑战2014年的ILSVRC时提出的系列模型。基于模型研究和比赛结果,两人发表了论文《Very Deep Convolutional Networks For Large-Scale Image Recognition》。

https://arxiv.org/abs/1409.1556

VGG的重要意义在于,其研究结果表明增加深度能够提高卷积神经网络的性能。在VGG之后,人们沿着更深层的网络这个方向,取得了一系列新的进展。

vgg16-on-Zynq

https://github.com/flymin/vgg16-on-Zynq

这是 Zynq FPGA 上实现 VGG16 网络的开源项目,项目侧重"实验",适合学习,所有的介绍都是中文的,大家看README就可以了。

PS:CSDN上有篇博文也是这个项目的README,不清楚是不是原作者~

FPGA-Accelerator-for-AES-LeNet-VGG16

https://github.com/zhan6841/FPGA-Accelerator-for-AES-LeNet-VGG16

这个是AES-LeNet-VGG16三个项目的集合体,项目没有介绍,但是不清楚是原作者还是收集的项目,每个项目文件夹下是有相关的设计文档的:

同时,该项目给了一个网址:

http://www.aoki.ecei.tohoku.ac.jp/crypto/web/cores.html

该网址给了几个比较实用的IP核源码,包括片上毛刺时钟发生器、RSA系列、JWIS2007、AES等,还有一些大家自己去看吧,除了源码和仿真文件外还有一些设计文档。

CNN_VGG19

这个项目实际上不是一个可训练的模型,只是 VGG19 的重建,用于对输入图像进行预测。

https://github.com/romulus0914/CNN_VGG19_verilog
https://github.com/18521449/Image-Classification-use-VGG16
https://github.com/PhanQuocLinh/Project_VGG16

总结

除了LeNet外很少有在FPGA上直接应用的项目了,基本都是实现各个神经网络的核心部分,应用大部分都是基于OpenVINO或者DPU的例子。这部分原因都在于时间和稳定性,后面的案例或者实例相对较少,会以理论项目为基础。

相关推荐
@心都27 分钟前
机器学习数学基础:29.t检验
人工智能·机器学习
9命怪猫29 分钟前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
kcarly2 小时前
KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
人工智能·语言模型·自然语言处理
Jackilina_Stone2 小时前
【论文阅读笔记】浅谈深度学习中的知识蒸馏 | 关系知识蒸馏 | CVPR 2019 | RKD
论文阅读·深度学习·蒸馏·rkd
倒霉蛋小马3 小时前
【YOLOv8】损失函数
深度学习·yolo·机器学习
MinIO官方账号4 小时前
使用 AIStor 和 OpenSearch 增强搜索功能
人工智能
补三补四4 小时前
金融时间序列【量化理论】
机器学习·金融·数据分析·时间序列
江江江江江江江江江4 小时前
深度神经网络终极指南:从数学本质到工业级实现(附Keras版本代码)
人工智能·keras·dnn
Fansv5874 小时前
深度学习-2.机械学习基础
人工智能·经验分享·python·深度学习·算法·机器学习
小怪兽会微笑4 小时前
PyTorch Tensor 形状变化操作详解
人工智能·pytorch·python