坐标变换矩阵

在高级驾驶辅助系统(ADAS)领域,存在多种常用的坐标系:雷达Lidar坐标系、车辆坐标系、相机坐标系、图像坐标系。

旋转变换矩阵(Rotation M atrix

在二维平面xoy上,由绿色坐标系逆时针 旋转θ°到蓝色坐标系 。可以看到,点A是没有移动的,变化的是点A分别在前后两个坐标系中的坐标,即从变换到了

如图1中黑色虚线的分解方式所示,通过矢量分解 (类似于物理中力、速度等矢量的分解),将绿色坐标系 中的分别分解到蓝色坐标系的x轴和y轴上,可以得到:

用矩阵表示为:

其中R则为二维情形下的旋转变换矩阵,它表示了A点在前后坐标系中的值的映射关系

三维情形

有了上述在二维平面旋转的基础,三维空间的旋转矩阵也就不难得出了。

即绕x轴,y轴,z轴分别进行旋转。最后将这三个旋转变换矩阵相乘,就能得到在三维空间任意角度的旋转变换矩阵了。(xyz轴满足右手系关系

绕x轴 旋转的时候,可以看作在yoz二维平面上的旋转,此时x的值不变

绕y轴 旋转的时候,可以看作在zox二维平面上的旋转,此时y的值不变

绕z轴 旋转的时候,可以看作在xoy二维平面上的旋转,此时z的值不变

最终的三维旋转变换矩阵就是上面三个矩阵相乘,意为三维坐标系分别绕x轴、y轴和z轴旋转相应的角度。

正交矩阵

向量正交

首先先明白什么是在解析几何中的概念,向量正交是指:若两个同维向量的点乘(也叫:数量积)为0,则两个向量正交(也叫垂直),即:在平面直角坐标系中 相互垂直(夹角为90度)。

例:假设存在三个向量,分别为:

正交矩阵

如果把正交的向量,按列向量的形式放进一个花括号内,即组成了一个正交向量组。那么该正交向量组中的向量,均两两相互垂直(也就是任意拿出两个向量来做点乘都=0)。

例:假设存在4个向量,分别为:

正交基

基向量是构成向量空间的一个向量组(坐标系),该向量组内的向量是线性无关的(若两两正交,则必定线性无关),并且通过它们的线性组合可以表示整个向量空间中的任意向量。

在此基础上,若基向量组内的向量两两正交,则称作:正交基,如下图所示:

特别的:若基向量组内的向量两两正交,且向量长度均为1,则称作:标准正交基。

向量组转矩阵

矩阵是一种数据结构,简单来说就是一张数表,往格子里填入相应的数字就能视作一个矩阵,所以向量组可以视作矩阵。那么,我们把上面的正交向量组视作矩阵:

正交矩阵

当正交向量组转为矩阵后,我们就可以用矩阵的视角来重新看待"正交向量组"

例1:是几行几列的矩阵?是不是方阵?

例2:矩阵的秩是多少?矩阵是否可逆?

至此,最核心的问题是:什么样的矩阵才能称作正交矩阵?

第一点:必须是一个方阵,即n行n列;

第二点:矩阵中的每一列若视作向量,则这些向量均两两相互垂直;

第三点**:矩阵中的每一列若视作向量,则这些向量的长度均为1;**

同时满足这3点,即为一个正交矩阵。让我们来看一些例子:

数学定义及性质

1、数字定义:

若一个方阵 是正交矩阵,当且仅当它的转置矩阵与自身的乘积等于单位矩阵

另一种等价的定义是:若方阵是正交矩阵,当且仅当的列向量是两两正交的单位向量。

2、数学特性

1、正交矩阵的逆:,正交矩阵的转置 = 正交矩阵的逆

2、正交矩阵的行列式: 行列式的取值只有两种可能(1)或(-1)

3、向量正交:将视作由若干行向量组成,则这些行向量两两相互正交,若将视作由若干列向量组成,则这些列向量也两两相互正交

相关推荐
Guofu_Liao1 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama
youcans_2 小时前
【微软:多模态基础模型】(5)多模态大模型:通过LLM训练
人工智能·计算机视觉·大模型·大语言模型·多模态
威桑3 小时前
CMake + mingw + opencv
人工智能·opencv·计算机视觉
只怕自己不够好5 小时前
《OpenCV 图像基础操作全解析:从读取到像素处理与 ROI 应用》
人工智能·opencv·计算机视觉
幻风_huanfeng5 小时前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理
嵌入式大圣5 小时前
嵌入式系统与OpenCV
人工智能·opencv·计算机视觉
GL_Rain7 小时前
【OpenCV】Could NOT find TIFF (missing: TIFF_LIBRARY TIFF_INCLUDE_DIR)
人工智能·opencv·计算机视觉
爱敲代码的憨仔8 小时前
《线性代数的本质》
线性代数·算法·决策树
向阳逐梦9 小时前
ROS机器视觉入门:从基础到人脸识别与目标检测
人工智能·目标检测·计算机视觉
有Li10 小时前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉