线性代数:每日一题1/特征值与相似对角化

设A, B 为二阶矩阵,且 AB = BA , 则"A有两个不相等的特征值"是"B可对角化"的()

A. 充分必要条件

B. 充分不必要条件

C.必要不充分条件

D.既不充分也不必要条件

知识点:

  1. 特征向量与特征值的关系

  2. 相似矩阵的定义和性质

  3. n阶矩阵可相似对角化的充要条件

定义一:设A是n阶矩阵,如果存在一个是 及非零的n维列向量 , 使得:

成立,则称 是矩阵A的一个特征值,称非零向量 是矩阵A属于特征值 的一个特征向量。

定义二:设 A 和 B 都是 n 阶矩阵,如果存在可逆矩阵 P ,使得:

则称矩阵 A 和 B 相似,记作 A~B .

特别地,如果A能够与对角矩阵相似,则称A可对角化。

定理1:n 阶方阵 A 可相似对角化的充要条件是 A 有 n 个线性无关的特征向量。

定理2:如果是矩阵 A 的互不相同的特征值, 线性无关。

由题目可知,A,B矩阵相似。A的特征值与与B的特征值相同。由定理1,2可知,A矩阵可相似对角化。由于A,B矩阵相似,故B可相似对角化。充分性成立。

下面看必要性:B可对角化,能推出有2个线性无关的特征向量。但是注意,线性无关的特征向量不能推出特征值互不相同,如:[1,0],[0,1]。所以不能推出A有两个不相等的特征值。

综上,A有两个不同的特征值是B可对角化的充分不必要条件。

相关推荐
前端小L1 小时前
动态规划的“升维”之技:二维前缀和,让矩阵查询“降维打击”
线性代数·矩阵
HVACoder20 小时前
复习下线性代数,使用向量平移拼接两段线
c++·线性代数·算法
应用市场20 小时前
楼灯光矩阵显示系统:从理论到实践的完整技术方案
线性代数·矩阵·wpf
然后,是第八天20 小时前
【机械臂运动学基础】变换矩阵
线性代数·矩阵
通信小呆呆1 天前
以矩阵视角统一理解:外积、Kronecker 积与 Khatri–Rao 积(含MATLAB可视化)
线性代数·算法·matlab·矩阵·信号处理
前端小L2 天前
动态规划的“降维”艺术:二维矩阵中的建筑奇迹——最大矩形
线性代数·矩阵
张晓~183399481213 天前
碰一碰发抖音源码技术搭建部署方案
线性代数·算法·microsoft·矩阵·html5
dxnb223 天前
Datawhale25年10月组队学习:math for AI+Task3线性代数(下)
人工智能·学习·线性代数
CLubiy3 天前
【研究生随笔】Pytorch中的线性代数(微分)
人工智能·pytorch·深度学习·线性代数·梯度·微分
郝学胜-神的一滴3 天前
矩阵的奇异值分解(SVD)及其在计算机图形学中的应用
程序人生·线性代数·算法·矩阵·图形渲染