线性代数:每日一题1/特征值与相似对角化

设A, B 为二阶矩阵,且 AB = BA , 则"A有两个不相等的特征值"是"B可对角化"的()

A. 充分必要条件

B. 充分不必要条件

C.必要不充分条件

D.既不充分也不必要条件

知识点:

  1. 特征向量与特征值的关系

  2. 相似矩阵的定义和性质

  3. n阶矩阵可相似对角化的充要条件

定义一:设A是n阶矩阵,如果存在一个是 及非零的n维列向量 , 使得:

成立,则称 是矩阵A的一个特征值,称非零向量 是矩阵A属于特征值 的一个特征向量。

定义二:设 A 和 B 都是 n 阶矩阵,如果存在可逆矩阵 P ,使得:

则称矩阵 A 和 B 相似,记作 A~B .

特别地,如果A能够与对角矩阵相似,则称A可对角化。

定理1:n 阶方阵 A 可相似对角化的充要条件是 A 有 n 个线性无关的特征向量。

定理2:如果是矩阵 A 的互不相同的特征值, 线性无关。

由题目可知,A,B矩阵相似。A的特征值与与B的特征值相同。由定理1,2可知,A矩阵可相似对角化。由于A,B矩阵相似,故B可相似对角化。充分性成立。

下面看必要性:B可对角化,能推出有2个线性无关的特征向量。但是注意,线性无关的特征向量不能推出特征值互不相同,如:[1,0],[0,1]。所以不能推出A有两个不相等的特征值。

综上,A有两个不同的特征值是B可对角化的充分不必要条件。

相关推荐
ElseWhereR1 天前
矩阵对角线元素的和 - 简单
线性代数·矩阵
y5236484 天前
PowerBI 矩阵,列标题自定义排序
线性代数·矩阵·powerbi
幻风_huanfeng4 天前
人工智能之数学基础:矩阵的相似变换的本质是什么?
人工智能·深度学习·线性代数·机器学习·矩阵·相似变换
passxgx5 天前
7.3 主成分分析(PCA)
线性代数
管理前沿5 天前
软件兼容性测试的矩阵爆炸问题有哪些解决方案
线性代数·矩阵
Ypuyu5 天前
[M模拟] lc3446. 按对角线进行矩阵排序(对角线遍历+公式推导+模板题)
线性代数·矩阵
爱学习的capoo5 天前
各种响应的理解
线性代数·矩阵
禾川兴 132424006886 天前
国产芯片解析:龙讯中继器/矩阵和交叉点
线性代数·矩阵
春风化作秋雨7 天前
什么是矩阵账号
大数据·线性代数·矩阵
百渡ovO8 天前
【蓝桥杯】每日练习 Day11 逆序对问题和多路归并
数据结构·c++·线性代数·算法·蓝桥杯·排序算法