线性代数:每日一题1/特征值与相似对角化

设A, B 为二阶矩阵,且 AB = BA , 则"A有两个不相等的特征值"是"B可对角化"的()

A. 充分必要条件

B. 充分不必要条件

C.必要不充分条件

D.既不充分也不必要条件

知识点:

  1. 特征向量与特征值的关系

  2. 相似矩阵的定义和性质

  3. n阶矩阵可相似对角化的充要条件

定义一:设A是n阶矩阵,如果存在一个是 及非零的n维列向量 , 使得:

成立,则称 是矩阵A的一个特征值,称非零向量 是矩阵A属于特征值 的一个特征向量。

定义二:设 A 和 B 都是 n 阶矩阵,如果存在可逆矩阵 P ,使得:

则称矩阵 A 和 B 相似,记作 A~B .

特别地,如果A能够与对角矩阵相似,则称A可对角化。

定理1:n 阶方阵 A 可相似对角化的充要条件是 A 有 n 个线性无关的特征向量。

定理2:如果是矩阵 A 的互不相同的特征值, 线性无关。

由题目可知,A,B矩阵相似。A的特征值与与B的特征值相同。由定理1,2可知,A矩阵可相似对角化。由于A,B矩阵相似,故B可相似对角化。充分性成立。

下面看必要性:B可对角化,能推出有2个线性无关的特征向量。但是注意,线性无关的特征向量不能推出特征值互不相同,如:[1,0],[0,1]。所以不能推出A有两个不相等的特征值。

综上,A有两个不同的特征值是B可对角化的充分不必要条件。

相关推荐
优美的赫蒂1 天前
理解欧拉公式
线性代数·算法·数学建模
weixin_428498491 天前
使用HYPRE库并行装配IJ稀疏矩阵
线性代数·矩阵
THe CHallEnge of THe BrAve2 天前
工业相机中CCM使能参数-色彩校正矩阵
数码相机·线性代数·矩阵
该怎么办呢3 天前
webgl入门实例-11模型矩阵 (Model Matrix)基本概念
线性代数·矩阵·webgl
海码0073 天前
【Hot100】 73. 矩阵置零
c++·线性代数·算法·矩阵·hot100
烟锁池塘柳03 天前
齐次坐标系下的变换矩阵
线性代数·数学建模·矩阵
蔗理苦3 天前
2025-04-18 李沐深度学习3 —— 线性代数
人工智能·深度学习·线性代数
电气外传3 天前
小小矩阵设计
线性代数·矩阵
爱的叹息3 天前
软考高级信息系统项目管理师的【干系人参与度评估矩阵】详解
线性代数·矩阵
transformer_WSZ4 天前
线性代数-矩阵的秩
线性代数·矩阵