线性代数:每日一题1/特征值与相似对角化

设A, B 为二阶矩阵,且 AB = BA , 则"A有两个不相等的特征值"是"B可对角化"的()

A. 充分必要条件

B. 充分不必要条件

C.必要不充分条件

D.既不充分也不必要条件

知识点:

  1. 特征向量与特征值的关系

  2. 相似矩阵的定义和性质

  3. n阶矩阵可相似对角化的充要条件

定义一:设A是n阶矩阵,如果存在一个是 及非零的n维列向量 , 使得:

成立,则称 是矩阵A的一个特征值,称非零向量 是矩阵A属于特征值 的一个特征向量。

定义二:设 A 和 B 都是 n 阶矩阵,如果存在可逆矩阵 P ,使得:

则称矩阵 A 和 B 相似,记作 A~B .

特别地,如果A能够与对角矩阵相似,则称A可对角化。

定理1:n 阶方阵 A 可相似对角化的充要条件是 A 有 n 个线性无关的特征向量。

定理2:如果是矩阵 A 的互不相同的特征值, 线性无关。

由题目可知,A,B矩阵相似。A的特征值与与B的特征值相同。由定理1,2可知,A矩阵可相似对角化。由于A,B矩阵相似,故B可相似对角化。充分性成立。

下面看必要性:B可对角化,能推出有2个线性无关的特征向量。但是注意,线性无关的特征向量不能推出特征值互不相同,如:[1,0],[0,1]。所以不能推出A有两个不相等的特征值。

综上,A有两个不同的特征值是B可对角化的充分不必要条件。

相关推荐
盛寒1 天前
矩阵的定义和运算 线性代数
线性代数
盛寒1 天前
初等变换 线性代数
线性代数
叶子爱分享1 天前
浅谈「线性代数的本质」 - 系列合集
线性代数
luofeiju1 天前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
好开心啊没烦恼1 天前
Python:线性代数,向量内积谐音记忆。
开发语言·python·线性代数·数据挖掘·数据分析
Ven%11 天前
矩阵阶数(线性代数) vs. 张量维度(深度学习):线性代数与深度学习的基石辨析,再也不会被矩阵阶数给混淆了
人工智能·pytorch·深度学习·线性代数·矩阵·tensor·张量
云云32112 天前
Subway Surfers Blast × 亚矩阵云手机:手游矩阵运营的终极变现方案
大数据·人工智能·线性代数·智能手机·矩阵·架构
点云侠13 天前
PCL 点云旋转的轴角表示法
人工智能·线性代数·算法·计算机视觉·矩阵
云云32113 天前
Snapchat矩阵运营新策略:亚矩阵云手机打造高效社交网络
线性代数·智能手机·矩阵
音程13 天前
(详细介绍)线性代数中的零空间(Null Space)
线性代数