线性代数:每日一题1/特征值与相似对角化

设A, B 为二阶矩阵,且 AB = BA , 则"A有两个不相等的特征值"是"B可对角化"的()

A. 充分必要条件

B. 充分不必要条件

C.必要不充分条件

D.既不充分也不必要条件

知识点:

  1. 特征向量与特征值的关系

  2. 相似矩阵的定义和性质

  3. n阶矩阵可相似对角化的充要条件

定义一:设A是n阶矩阵,如果存在一个是 及非零的n维列向量 , 使得:

成立,则称 是矩阵A的一个特征值,称非零向量 是矩阵A属于特征值 的一个特征向量。

定义二:设 A 和 B 都是 n 阶矩阵,如果存在可逆矩阵 P ,使得:

则称矩阵 A 和 B 相似,记作 A~B .

特别地,如果A能够与对角矩阵相似,则称A可对角化。

定理1:n 阶方阵 A 可相似对角化的充要条件是 A 有 n 个线性无关的特征向量。

定理2:如果是矩阵 A 的互不相同的特征值, 线性无关。

由题目可知,A,B矩阵相似。A的特征值与与B的特征值相同。由定理1,2可知,A矩阵可相似对角化。由于A,B矩阵相似,故B可相似对角化。充分性成立。

下面看必要性:B可对角化,能推出有2个线性无关的特征向量。但是注意,线性无关的特征向量不能推出特征值互不相同,如:[1,0],[0,1]。所以不能推出A有两个不相等的特征值。

综上,A有两个不同的特征值是B可对角化的充分不必要条件。

相关推荐
劈星斩月3 小时前
3Blue1Brown《线性代数的本质》矩阵与线性变换
线性代数·矩阵·线性变换
CoderYanger15 小时前
A.每日一题——2435. 矩阵中和能被 K 整除的路径
开发语言·线性代数·算法·leetcode·矩阵·深度优先·1024程序员节
oscar99916 小时前
线性代数第六章 二次型
线性代数·二次型
oscar99916 小时前
线性代数 第五章 矩阵的相似化简
线性代数·矩阵·相似化简
oscar9991 天前
线性代数第三章 向量
线性代数
兩尛1 天前
矩阵中非1的数量 (2025B卷
线性代数·算法·矩阵
WenGyyyL2 天前
深度学习数学基础(一)——线性代数、线性代数和微积分
人工智能·深度学习·线性代数
CoderYanger2 天前
递归、搜索与回溯-记忆化搜索:40.矩阵中的最长递增路径
java·线性代数·算法·leetcode·矩阵·1024程序员节
qq_430855882 天前
线性代数第一章第一课: 二阶三阶行列式
线性代数·算法·矩阵
oscar9992 天前
线性代数第四章 线性方程组
线性代数·线性方程组