线性代数:每日一题1/特征值与相似对角化

设A, B 为二阶矩阵,且 AB = BA , 则"A有两个不相等的特征值"是"B可对角化"的()

A. 充分必要条件

B. 充分不必要条件

C.必要不充分条件

D.既不充分也不必要条件

知识点:

  1. 特征向量与特征值的关系

  2. 相似矩阵的定义和性质

  3. n阶矩阵可相似对角化的充要条件

定义一:设A是n阶矩阵,如果存在一个是 及非零的n维列向量 , 使得:

成立,则称 是矩阵A的一个特征值,称非零向量 是矩阵A属于特征值 的一个特征向量。

定义二:设 A 和 B 都是 n 阶矩阵,如果存在可逆矩阵 P ,使得:

则称矩阵 A 和 B 相似,记作 A~B .

特别地,如果A能够与对角矩阵相似,则称A可对角化。

定理1:n 阶方阵 A 可相似对角化的充要条件是 A 有 n 个线性无关的特征向量。

定理2:如果是矩阵 A 的互不相同的特征值, 线性无关。

由题目可知,A,B矩阵相似。A的特征值与与B的特征值相同。由定理1,2可知,A矩阵可相似对角化。由于A,B矩阵相似,故B可相似对角化。充分性成立。

下面看必要性:B可对角化,能推出有2个线性无关的特征向量。但是注意,线性无关的特征向量不能推出特征值互不相同,如:[1,0],[0,1]。所以不能推出A有两个不相等的特征值。

综上,A有两个不同的特征值是B可对角化的充分不必要条件。

相关推荐
MarkHD15 小时前
第十一天 线性代数基础
线性代数·决策树·机器学习
星沁城19 小时前
240. 搜索二维矩阵 II
java·线性代数·算法·leetcode·矩阵
君臣Andy3 天前
【矩阵的大小和方向的分解】
线性代数·矩阵
勤劳的进取家3 天前
利用矩阵函数的导数公式求解一阶常系数微分方程组的解
线性代数
sz66cm3 天前
数学基础 -- 线性代数之线性无关
人工智能·线性代数·机器学习
herobrineAC3 天前
线代的几何意义(一)——向量,坐标,矩阵
线性代数·矩阵
Ricciflows3 天前
分析学大师Elias M. Stein的分析系列教材
线性代数·数学建模·矩阵·概率论·抽象代数·拓扑学·傅立叶分析
余~185381628004 天前
矩阵NFC碰一碰发视频源码开发技术解析,支持OEM
大数据·人工智能·线性代数·矩阵·音视频
羞儿4 天前
构建旋转变换矩阵对二维到高维空间的线段点进行旋转
图像处理·人工智能·线性代数·矩阵
羊羊20354 天前
线性代数:Matrix2x2和Matrix3x3
线性代数·数学建模·unity3d