大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(正在更新!)

章节内容

上节完成的内容如下:

  • SparkSQL介绍
  • SparkSQL特点
  • SparkSQL数据抽象
  • SparkSQL数据类型

SparkSession

在 Spark2.0 之前

  • SQLContext 是创建 DataFrame 和 执行SQL的入口
  • HiveContext 通过HiveSQL语句操作Hive数据,兼Hive操作,HiveContext继承自SQLContext

在 Spark2.0 后

  • 这些入口点统一到了SparkSession,SparkSession封装了SQLContext及HiveContext
  • 实现了SQLContext即HiveContext所有功能
  • 通过SparkSession可以获取到SparkContext

RDD(Resilient Distributed Dataset,弹性分布式数据集)

RDD 是 Spark 的基础抽象,它表示一个不可变的、分布式的数据集。

特点:

  • 不可变性:RDD 是不可变的,一旦创建就不能修改。任何对 RDD 的操作都会生成一个新的 RDD。
  • 弹性:RDD 可以自动从节点失败中恢复数据,通过将计算逻辑重新应用到原始数据来重建丢失的数据。
  • 分布式:RDD 可以分布在多个节点上执行操作,充分利用集群的计算能力。
  • 延迟计算:RDD 的操作是延迟执行的(lazy evaluation),即只有在触发行动操作(如 count()、collect())时,Spark 才会实际执行计算。
  • 类型安全:RDD 是类型化的,但它的 API 是松散类型(loosely typed)的,这意味着编译器不会在编译时检查数据的类型,而是在运行时才会发现类型错误。

DataFrame

DataFrame 是一种基于 RDD 的分布式数据集,它具有命名的列。

特点:

  • 结构化数据:DataFrame 是一个二维表格,具有命名的列和行,类似于关系数据库中的表或 Pandas 的 DataFrame。
  • 优化引擎:DataFrame 受益于 Spark SQL 引擎的优化,如 Catalyst 优化器,可以自动优化查询并生成高效的执行计划。
  • 丰富的 API:DataFrame 提供了一个高层次的 API,支持复杂的查询、过滤、聚合和连接操作。
  • 类型不安全:与 RDD 不同,DataFrame 是动态类型(dynamic typing)的,数据类型检查是在运行时进行的,因此它在编译时不进行类型检查。

DataSet

DataSet 是 Spark 1.6 引入的一个新的数据抽象,它结合了 RDD 的强类型优势和 DataFrame 的优化能力。

特点:

  • 类型安全:DataSet 是强类型的,它利用编译时类型检查,确保在编译时检测类型错误。
  • 优化和性能:DataSet 受益于 Catalyst 优化器和 Tungsten 执行引擎,提供与 DataFrame 相同的优化能力,同时保留了类型安全性。
  • 更丰富的 API:DataSet 提供了 RDD 的大部分 API,如 map、filter 等,同时也支持 SQL 查询。
  • 统一 API:DataSet API 统一了 RDD 和 DataFrame,提供了一种更具表现力和安全性的编程模型。

DataFrame & Dataset 创建

不要刻意区分: DF & DS,DF是一种特殊的DS:ds.transformation => ds

由 Range 生成 Dataset

在 spark-shell 中进行测试

scala 复制代码
val numDS = spark.range(5, 100, 5)
// orderBy 转换操作 
numDS.orderBy(desc("id")).show(5)
// 统计信息
numDS.describe().show
// 显示 Schema 信息
numDS.printSchema
// 使用RDD执行同样的操作
numDS.rdd.map(_.toInt).stats
// 检查分区数
numDS.rdd.getNumPartitions

运行测试的过程如下图所示:

有集合生成Dataset

Dataset = RDD[case class],在 spark-shell 中进行测试

scala 复制代码
case class Person(name: String, age: Int, height: Int)

// 注意 Seq 中元素的类型
val seq1 = Seq(Person("Jack", 28, 184), Person("Tom", 10, 144), Person("Andy", 16, 165))

val ds1 = spark.createDataset(seq1)
ds1.printSchema
ds1.show

执行的结果:

再来一个测试:

scala 复制代码
val seq2 = Seq(("Jack", 28, 184), ("Tom", 10, 144), ("Andy", 16, 165))
val ds2 = spark.createDataset(seq2)
ds2.printSchema
ds2.show

执行的结果:

由集合生成DataFrame

DataFrame = RDD[Row] + Schema

继续进行测试:

scala 复制代码
val lst = List(("Jack", 28, 184), ("Tom", 10, 144), ("Andy", 16, 165))
val df1 = spark.createDataFrame(lst).withColumnRenamed("_1", "name1").withColumnRenamed("_2", "age1").withColumnRenamed("_3", "height1")
df1.orderBy("age1").show(10)

执行的结果如下图所示:

RDD转成DataFrame

DataFrame = RDD[Row] + Schema

scala 复制代码
val arr = Array(("Jack", 28, 184), ("Tom", 10, 144), ("Andy", 16, 165))
val rdd1 = sc.makeRDD(arr).map(f => Row(f._1, f._2, f._3))

val schema = StructType(
  StructField("name", StringType, false) ::
  StructField("age", IntegerType, false) ::
  StructField("height", IntegerType, false) ::
  Nil
)

val schema1 = (new StructType).add("name", "string", false).add("age", "int", false).add("height", "int", false)
val rddToDF = spark.createDataFrame(rdd1, schema)
rddToDF.orderBy(desc("name")).show(false)

执行的结果如下图:

RDD转Dataset

Dataset = RDD[case class]

DataFrame = RDD[Row] + Schema

scala 复制代码
val arr = Array(("Jack", 28, 184), ("Tom", 10, 144), ("Andy", 16, 165))
val rdd1 = sc.makeRDD(arr)
val ds2 = spark.createDataset(rdd1)
ds2.show(10)

执行的结果如下图:

从文件创建DataFrame

CSV文件

我们生成了一个CSV文件,大致内容如下:

运行测试

scala 复制代码
val df1 = spark.read.csv("/opt/wzk/data/people1.csv")
df1.printSchema()
df1.show()

运行结果如下图所示:

三者转换

Spark SQL 提供了一个领域特定语言(DSL)以方便操作结构化数据,核心思想还是SQL,仅仅是一个语法问题。

RDD 与 DataFrame 之间的转换

RDD 转换为 DataFrame

将 RDD 转换为 DataFrame 需要提供数据的模式信息。通常你会使用 toDF() 方法将 RDD 转换为 DataFrame。

这里有两种主要方法:

  • 使用隐式转换:需要导入 spark.implicits._,这允许你在不显式提供模式的情况下将常见的 RDD(如元组)转换为 DataFrame。
  • 使用 StructType 定义模式:如果 RDD 的数据结构比较复杂,或者你需要精确控制 DataFrame 的模式,可以使用 StructType 和 Row。

DataFrame 转换为 RDD:

  • 将 DataFrame 转换为 RDD 非常简单,只需调用 rdd 方法即可

DataFrame 与 DataSet 之间的转换

DataFrame 转换为 DataSet

  • DataFrame 是无类型的,而 DataSet 是类型化的。为了将 DataFrame 转换为 DataSet,你需要定义一个对应的数据类型(通常是一个 case class)并使用 as[T] 方法

DataSet 转换为 DataFrame

  • 将 DataSet 转换为 DataFrame 非常简单,只需调用 toDF() 方法即可

RDD 与 DataSet 之间的转换

RDD 转换为 DataSet

  • 将 RDD 转换为 DataSet 需要将 RDD 的元素类型与 DataSet 的类型一致。与将 RDD 转换为 DataFrame 类似,通常使用隐式转换或显式提供模式信息

DataSet 转换为 RDD

  • DataSet 本质上是类型化的 RDD,因此转换为 RDD 非常直接,只需调用 rdd 方法

最终汇总

  • RDD 转换为 DataFrame:使用 toDF(),或使用 createDataFrame() 提供模式。
  • DataFrame 转换为 RDD:使用 rdd 方法,转换后元素类型为 Row。
  • DataFrame 转换为 DataSet:使用 as[T] 方法,需提供对应的 case class。
  • DataSet 转换为 DataFrame:使用 toDF() 方法。
  • RDD 转换为 DataSet:使用 toDS(),需提供对应的 case class。
  • DataSet 转换为 RDD:使用 rdd 方法。
相关推荐
hstar952720 分钟前
二、即时通讯系统设计经验
java·架构
bbsh209930 分钟前
WebFuture 升级提示“不能同时包含聚集KEY和大字段””的处理办法
数据库·sql·mysql·webfuture
江梦寻34 分钟前
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
开发语言·后端·python·macos·架构·策略模式
线条12 小时前
大数据 ETL 工具 Sqoop 深度解析与实战指南
大数据·sqoop·etl
优秀的颜3 小时前
计算机基础知识(第五篇)
java·开发语言·分布式
mazhafener1239 小时前
智慧照明:集中控制器、单双灯控制器与智慧灯杆网关的高效协同
大数据
打码人的日常分享9 小时前
物联网智慧医院建设方案(PPT)
大数据·物联网·架构·流程图·智慧城市·制造
白水baishui9 小时前
搭建强化推荐的决策服务架构
架构·推荐系统·强化学习·决策服务·服务架构
何双新9 小时前
第23讲、Odoo18 邮件系统整体架构
ai·架构
雪碧聊技术9 小时前
将单体架构项目拆分成微服务时的两种工程结构
微服务·架构·module·project·工程结构