随写transformer

作为针对序列建模的模型,RNN,LSTM在以序列为主要呈现形式的NLP任务上展现出远超CNN的卓越性能。但是仍有缺陷:

  • RNN为单向依序计算,序列需要依次输入,串行计算,限制了计算机的并行计算能力,导致时间成本过高。
  • RNN难以捕捉长期依赖 问题,即对于极长的序列,RNN难以捕捉远距离输入 之间的关系。虽然LSTM通过门机制对此进行了一定优化,但RNN对长期依赖问题的捕捉能力仍然不如人意。

针对上述两个问题,2017年,Vaswani 等人发表了论文**《Attention Is All You Need》** ,抛弃了传统的 CNN、RNN 架构,提出了一种全新的完全基于 attention 机制 的模型------Transformer ,解决了上述问题,在较小的时间成本下取得了多个任务的 the-state-of-art效果,并为自然语言处理任务提供了新的思路。

自此,attention 机制进入自然语言处理任务的主流架构,在 Transformer 的基础上,诞生了预训练-微调范式 的多种经典模型如 Bert、GPT、T5 等。当然,同样是在 Transformer 的肩膀上,引入了 RLHF 机制 、实现了大量参数建模的 ChatGPT 则带领 NLP 进入了全新的大模型时代。

但不管是预训练-微调范式的主流模型 Bert,还是大模型时代的主流模型 ChatGPT、LLaMA,Transformer 都是其最坚实的基座。

注意力公式Q与K乘积进行放缩的原因:

如果Q和K对应的维度比较大,softmax放缩时就非常容易受影响,使不同值之间的差异较大,从而影响梯度的稳定性,因此,要将Q和K乘积的结果做一个放缩。

相关推荐
精灵vector10 分钟前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain
java1234_小锋27 分钟前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)
python·机器学习·scikit-learn
万邦科技Lafite1 小时前
实战演练:通过API获取商品详情并展示
大数据·数据库·python·开放api接口
愈努力俞幸运1 小时前
uv教程 虚拟环境
python·uv
IMER SIMPLE1 小时前
人工智能-python-深度学习-经典网络模型-LeNets5
人工智能·python·深度学习
企业软文推广1 小时前
奥迪A5L×华为:品牌营销视角下的燃油车智能突围战!
python·华为
Pocker_Spades_A2 小时前
Python快速入门专业版(十五):数据类型实战:用户信息录入程序(整合变量、输入与类型转换)
数据库·python
IMER SIMPLE2 小时前
人工智能-python-深度学习-神经网络-GoogLeNet
人工智能·python·深度学习
小宁爱Python2 小时前
Django 从环境搭建到第一个项目
后端·python·django