随写transformer

作为针对序列建模的模型,RNN,LSTM在以序列为主要呈现形式的NLP任务上展现出远超CNN的卓越性能。但是仍有缺陷:

  • RNN为单向依序计算,序列需要依次输入,串行计算,限制了计算机的并行计算能力,导致时间成本过高。
  • RNN难以捕捉长期依赖 问题,即对于极长的序列,RNN难以捕捉远距离输入 之间的关系。虽然LSTM通过门机制对此进行了一定优化,但RNN对长期依赖问题的捕捉能力仍然不如人意。

针对上述两个问题,2017年,Vaswani 等人发表了论文**《Attention Is All You Need》** ,抛弃了传统的 CNN、RNN 架构,提出了一种全新的完全基于 attention 机制 的模型------Transformer ,解决了上述问题,在较小的时间成本下取得了多个任务的 the-state-of-art效果,并为自然语言处理任务提供了新的思路。

自此,attention 机制进入自然语言处理任务的主流架构,在 Transformer 的基础上,诞生了预训练-微调范式 的多种经典模型如 Bert、GPT、T5 等。当然,同样是在 Transformer 的肩膀上,引入了 RLHF 机制 、实现了大量参数建模的 ChatGPT 则带领 NLP 进入了全新的大模型时代。

但不管是预训练-微调范式的主流模型 Bert,还是大模型时代的主流模型 ChatGPT、LLaMA,Transformer 都是其最坚实的基座。

注意力公式Q与K乘积进行放缩的原因:

如果Q和K对应的维度比较大,softmax放缩时就非常容易受影响,使不同值之间的差异较大,从而影响梯度的稳定性,因此,要将Q和K乘积的结果做一个放缩。

相关推荐
studytosky几秒前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
清水白石00844 分钟前
《Python × 数据库:用 SQLAlchemy 解锁高效 ORM 编程的艺术》
开发语言·python·json
星依网络1 小时前
使用LabelImg工具标注数据(游戏辅助脚本开发)
python·游戏引擎·图形渲染·骨骼绑定
站大爷IP1 小时前
Appium实现Android应用数据爬取:从环境搭建到实战优化
python
IT老兵20251 小时前
PyTorch DDP多GPU训练实践问题总结
人工智能·pytorch·python·分布式训练·ddp
9527(●—●)2 小时前
windows系统python开发pip命令使用(菜鸟学习)
开发语言·windows·python·学习·pip
森叶2 小时前
手搓一个 Windows 注册表清理器:从开发到 EXE 打包全流程
windows·python
骚戴2 小时前
大语言模型(LLM)进阶:从闭源大模型 API 到开源大模型本地部署,四种接入路径全解析
java·人工智能·python·语言模型·自然语言处理·llm·开源大模型
柒壹漆2 小时前
用Python制作一个USB Hid设备数据收发测试工具
开发语言·git·python
东哥很忙XH2 小时前
python使用PyQt5开发桌面端串口通信
开发语言·驱动开发·python·qt