随写transformer

作为针对序列建模的模型,RNN,LSTM在以序列为主要呈现形式的NLP任务上展现出远超CNN的卓越性能。但是仍有缺陷:

  • RNN为单向依序计算,序列需要依次输入,串行计算,限制了计算机的并行计算能力,导致时间成本过高。
  • RNN难以捕捉长期依赖 问题,即对于极长的序列,RNN难以捕捉远距离输入 之间的关系。虽然LSTM通过门机制对此进行了一定优化,但RNN对长期依赖问题的捕捉能力仍然不如人意。

针对上述两个问题,2017年,Vaswani 等人发表了论文**《Attention Is All You Need》** ,抛弃了传统的 CNN、RNN 架构,提出了一种全新的完全基于 attention 机制 的模型------Transformer ,解决了上述问题,在较小的时间成本下取得了多个任务的 the-state-of-art效果,并为自然语言处理任务提供了新的思路。

自此,attention 机制进入自然语言处理任务的主流架构,在 Transformer 的基础上,诞生了预训练-微调范式 的多种经典模型如 Bert、GPT、T5 等。当然,同样是在 Transformer 的肩膀上,引入了 RLHF 机制 、实现了大量参数建模的 ChatGPT 则带领 NLP 进入了全新的大模型时代。

但不管是预训练-微调范式的主流模型 Bert,还是大模型时代的主流模型 ChatGPT、LLaMA,Transformer 都是其最坚实的基座。

注意力公式Q与K乘积进行放缩的原因:

如果Q和K对应的维度比较大,softmax放缩时就非常容易受影响,使不同值之间的差异较大,从而影响梯度的稳定性,因此,要将Q和K乘积的结果做一个放缩。

相关推荐
Eiceblue8 分钟前
使用Python获取PDF文本和图片的精确位置
开发语言·python·pdf
我叫czc11 分钟前
【Python高级353】python实现多线程版本的TCP服务器
服务器·python·tcp/ip
爱数学的程序猿15 分钟前
Python入门:6.深入解析Python中的序列
android·服务器·python
comli_cn42 分钟前
使用清华源安装python包
开发语言·python
赵谨言1 小时前
基于python 微信小程序的医院就诊小程序
经验分享·python·毕业设计
1.01^10001 小时前
[1111].集成开发工具Pycharm安装与使用
python·pycharm
HEX9CF1 小时前
【Django】测试带有 CSRF 验证的 POST 表单 API 报错:Forbidden (CSRF cookie not set.)
python·django·csrf
深度学习机器2 小时前
LangGraph:基于图结构的大模型智能体开发框架
人工智能·python·深度学习
凡人的AI工具箱2 小时前
每天40分玩转Django:实操多语言博客
人工智能·后端·python·django·sqlite
Py办公羊大侠2 小时前
Excel批量设置行高,Excel表格设置自动换行后打印显示不全,Excel表格设置最合适的行高后打印显示不全,完美解决方案!!!
python·excel·打印·openpyxl·自动换行·显示不全