神经网络——CIFAR10小实战

1.引子


Sequential的使用:将网络结构放入其中即可,可以简化代码。

找了一个对CIFAR10进行分类的模型。

2.代码实战

python 复制代码
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.conv1 = Conv2d(3, 32, 5, padding=2)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(32, 32, 5, padding=2)
        self.maxpool2 = MaxPool2d(2)
        self.conv3 = Conv2d(32, 64, 5, padding=2)
        self.maxpool3 = MaxPool2d(2)
        self.flatten = Flatten()
        self.linear1 = Linear(1024, 64)
        self.linear2 = Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x

tudui=Tudui()
print(tudui)

nn.Flatten()和torch.flatten()有相同的效果。

3.Sequential

python 复制代码
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self, x):
        x=self.model1(x)
        return x

tudui=Tudui()
print(tudui)
## 创建一个指定形状的 ones 张量
input=torch.ones((64,3,32,32))
output=tudui(input)
print(output.shape)

使用Sequential可以很大程度地简化代码。

4.利用TensorBoard进行数据可视化

使用SummaryWriter的add_graph()方法进行数据可视化。

python 复制代码
writer=SummaryWriter("logs_sqe")
writer.add_graph(tudui,input)
writer.close()

基本的网络搭建到此结束。

相关推荐
Elastic 中国社区官方博客14 分钟前
Elasticsearch:如何使用 Qwen3 来做向量搜索
大数据·人工智能·elasticsearch·搜索引擎·全文检索
Black_Rock_br38 分钟前
GraphRAG:AI理解复杂知识的未知领域,开启探索之旅
人工智能
失散135 小时前
深度学习——03 神经网络(2)-损失函数
人工智能·深度学习·神经网络·损失函数
商业讯6 小时前
大模型驱动的服务革命:2025智能客服机器人选型与落地路径
人工智能·机器人
mortimer8 小时前
Hugging Face 下载模型踩坑记:从符号链接到网络错误
人工智能·python·ai编程
一株月见草哇10 小时前
Matlab(4)
人工智能·算法·matlab
IMER SIMPLE10 小时前
人工智能-python-机器学习-线性回归与梯度下降:理论与实践
人工智能·python·机器学习
lxmyzzs10 小时前
【图像算法 - 12】OpenCV-Python 入门指南:图像视频处理与可视化(代码实战 + 视频教程 + 人脸识别项目讲解)
人工智能·opencv·计算机视觉
hans汉斯11 小时前
基于深度学习的苹果品质智能检测算法研究
人工智能·深度学习·算法
2401_8318960311 小时前
深度学习(5):激活函数
人工智能·深度学习