[数据结构] 哈希结构的哈希冲突&&解决哈希冲突

标题:[C++] 哈希结构的哈希冲突 && 解决哈希冲突

@水墨不写bug



目录

一、引言

1.哈希

2.哈希冲突

3.哈希函数

二、解决哈希冲突

1.闭散列

I,线性探测

II,二次探测

2.开散列


正文开始:

一、引言

哈希表是一种非常实用而且好用的关联式容器,如果你刷过不少题,一定会惊叹哈希竟然能解决如此多的实际问题。

但是哈希表令人头疼的问题是哈希冲突的问题。在具体讲解之前,我们先铺垫引入几个概念:哈希,哈希函数,哈希冲突。

1.哈希

哈希结构最明显的特点是高效。在以往的顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(log2 N),搜索的效率取决于搜索过程中元素的比较次数。

最优的搜索方法:不经过任何比较,一次直接从表中得到要搜索的元素。

如果存在一种存储结构 ,通过某种函数(hashFunc) 使元素的存储位置 与它的关键码(key) 之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当我们向该结构中:

**插入元素的时候:**根据插入元素的关键码,根据这个关键码来通过某种映射关系来得到哈希表中对应的存储位置,然后将这个元素存入哈希表的对应位置。

**搜索元素的时候:**对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在哈希表中按照此位置进行查找,若关键码相等,则搜索成功。

这种存储结构和方法统称为哈希

哈希方法中使用的转换函数称为哈希(散列)函数 ,构造出来的结构称为哈希表(Hash Table)(或者称散列表).

2.哈希冲突

我们可以设计一个简单的哈希表:10个位置 ,哈希函数也是非常简单的除留取余(插入元素除以表的大小,就通过哈希函数得到了这个值应该在表中存储的位置):

用该方法进行搜索可以一次找到存储对应值的位置,因此搜索的速度比较快。
但是,如果向上面这样的哈希表中插入14呢?

我们发现14的位置被4占据了,这就是哈希冲突。

即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为"同义词".

3.哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

哈希函数设计原则:

1.哈希函数的定义域必须包括需要存储的全部关键码,同时如果散列表允许有m个地址时,其值域必须在0到m-1之间。

2.哈希函数计算出来的地址能尽可能的均匀分布在整个空间中。

3.哈希函数应该比较简单

我们需要了解一下常见的哈希函数的设计方法:

1. 直接定址法

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B

优点:简单、均匀、一般不会出现哈希冲突

缺点:需要事先知道关键字的分布情况

使用场景:适合查找比较小且连续的情况

2. 除留余数法.

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址.

优点:适用情况广泛

缺点:会出现哈希冲突,需要解决哈希冲突的问题

二、解决哈希冲突

哈希冲突的解决方法常用的有两种:闭散列与开散列。

1.闭散列

闭散列:也叫开放定址法 ,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的**"下一个" 空位置**中去。

寻找下一个"空位置"也有多种方法,这里介绍常见的两种:线性探测,二次探测。

I,线性探测

在上面的例子中,我们想要插入14,本来14经过哈希函数计算得到的位置是4,但是4这个位置已经被占据了。

线性探测就是:从发生冲突的位置开始,一个一个向后探测,直到寻找到下一个空位置为止。

a.插入

首先通过哈希函数获取待插入元素在哈希表中的位置。 如果该位置中没有元素则直接插入新元素;如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素:

b.删除

采用闭散列 处理哈希冲突时,不能随便物理删除 哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。

比如:删除元素4,如果直接删除掉,14查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

我们可以通过一个标记状态的变量来表示哈希表内的数据的状态:存在,删除,空(EXIST,DELETE,EMPTY):

cpp 复制代码
enum STATE
{
    EXIST,
    DELETE,
    EMPTY
}    

在封装哈希表中每一个数据的类型时,在每个数据结构体内加入一个表示状态的变量即可。对于一个哈希表的位置,如果没有元素插入过,状态为EMPTY;

如果存在元素,状态为EXIST;

如果原来存在元素,但是之后删除了,状态为DELETE;

不同的状态对于将来查找(find)的处理会有影响。

II,二次探测

通过了解上面的线性探测,你自然也会发现线性探测的困难:

产生冲突的数据堆积在一块,这与其一个一个向下找空位置有关系,找空位置的方式就是挨着往后逐个去找.

二次探测的找下一个空位置的方法就大不相同了:二次探测向下找的方式是依次加上位置差的平方:

H_i = (H_0 + i^2 )% m 或者H_i = (H_0 - i^2 )% m

其中:i = 1,2,3..., H_0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。

对于上面的例子,如果使用二次探测,插入的过程:

插入 44 的过程:

1.44 的初始哈希值是 14 % 10 = 4 ,但是位置 4 已经被占用了。

2.触发二次探测,从 i = 1 开始。对于 i = 1 ,探测位置是:(4 + 1^2) % 10 = 5 但位置 5 也被占用了。

3.继续探测, i = 2 时,探测位置是:(4 + 2^2) % 10 = 8

位置 8 是空的,所以 14 被插入到位置 8。

对于闭散列而言,哈希表是需要扩容的,因为我们每次插入的时候都需要保证哈希表有空余的位置 ,所以我们需要一个判断哈希表内数据 装满程度的标志因子:载荷因子

载荷因子记为a,a越大,表明填入表中的数据越多,产生哈希冲突的可能就越大。反之则相反。

对于开放定址法,载荷因子需要严格控制在0.7-0.8以下。当载荷因子接近这个值时,就需要扩容。

2.开散列

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个 ,各个桶中的元素通过一个单链表 链接起来,各链表的头结点存储在哈希表中:

当插入14时,对4这个位置的链表头插即可:

以上是哈希结构解决哈希冲突的方法。


完~

未经作者同意禁止转载

相关推荐
网易独家音乐人Mike Zhou3 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
搬砖的小码农_Sky6 小时前
C语言:数组
c语言·数据结构
Swift社区7 小时前
LeetCode - #139 单词拆分
算法·leetcode·职场和发展
Kent_J_Truman8 小时前
greater<>() 、less<>()及运算符 < 重载在排序和堆中的使用
算法
先鱼鲨生8 小时前
数据结构——栈、队列
数据结构
一念之坤8 小时前
零基础学Python之数据结构 -- 01篇
数据结构·python
IT 青年8 小时前
数据结构 (1)基本概念和术语
数据结构·算法
熬夜学编程的小王8 小时前
【初阶数据结构篇】双向链表的实现(赋源码)
数据结构·c++·链表·双向链表
Dong雨8 小时前
力扣hot100-->栈/单调栈
算法·leetcode·职场和发展
SoraLuna9 小时前
「Mac玩转仓颉内测版24」基础篇4 - 浮点类型详解
开发语言·算法·macos·cangjie