GEO数据的下载和处理|GEO数据转换为Gene symbol|GEO注释文件提取symbol|查看样本标签|查看GEO数据疾病或正常|生物信息基础

GEO数据的下载和处理|GEO数据转换为Gene symbol|GEO注释文件提取symbol|查看样本标签|查看GEO数据疾病或正常|生物信息基础

数据的下载和处理

  1. 首先在GEO数据库中通过GSE ID找到相关数据,然后下载txt文件。
  2. 数据读取与处理。
R 复制代码
#设置工作路径,也就是你的分析数据存放以及要保存到地方
setwd(dir="C:\\Users\\Liao Minzhen\\PycharmProjects\\pythonProject3\\compare_data") 

Rawdata=read.table('GSE8671_series_matrix.txt.gz',#将这个文件替换为下载的文件
                   sep = '\t',quote ="",fill = T,
                   comment.char = "!",header = T)

#读进来发现第一列的字符串带有引号,写循环太麻烦,用quote=F手动给去掉一下
write.table(Rawdata, file = "test.csv",sep=",", row.names = F,quote = F)
Raw2=read.table('test.csv',sep=",",header=T)
rownames(Raw2)=Raw2[,1]
Raw2=Raw2[,-1]
#Raw2即为所下载的文件:列为样本,行为探针

将探针转换为symbol

  1. 将探针转换为Gene symbol,代码可以直接用~~~~
    下载对应注释文件,第一步中的Platform,点进去GPL570,进入新页面,然后下载Full table,就是后续用到的GPL570-55999.txt这个文件!!!!!R语言代码中的,到时候替换成你们自己的注释文件即可!
R 复制代码
#symbol ID 转换
#install.packages('data.table')
library(data.table)
b=fread('GPL570-55999.txt',data.table = F)[,c(1,11)]  #提取表中我要的列:ID名和gene symbol所在的列

#install.packages("stringr")
library(stringr)
b$gene=str_split(b$V11,'///',simplify = T)[,1]
ids=b[,-2]
#给列名换个简单点的名字
colnames(ids)[1] <- 'Affi'

#探针转换为gene symbol
library(GEOquery)
library(limma)
library(affy)
#BiocManager::install("affy") #若包不存在则安装

#去重复值:只取第一个Gene symbol来达到去重效果
ids$`gene`<-data.frame(sapply(ids$`gene`,function(x)unlist(strsplit(x,"///"))[1]),stringsAsFactors=F)[,1]
#对表达矩阵exp进行探针ID转化,首先将其转换为数据框的形式,否则一会会报错
Raw2<-as.data.frame(Raw2)
#将探针ID放到数据框里面
Raw2$ID <- rownames(Raw2)
#改变我们原有的探针ID与gene_symbol对应的名字,方便merge
colnames(ids) <- c('ID','symbol')
Raw2_symbol <-merge(Raw2,ids,by = 'ID')
#去除匹配不上的,Raw2_symbol即为想要的数据
Raw2_symbol<-na.omit(Raw2_symbol)
#删除第一列
Raw2_symbol <- Raw2_symbol[,-1]

# 将最后一列移动到第一列的位置
Raw2_symbol <- Raw2_symbol[ , c(ncol(Raw2_symbol), 1:(ncol(Raw2_symbol) - 1))]
write.csv(Raw2_symbol,file = 'symbol_data.csv',row.names = TRUE)

查看数据标签,查看样本疾病或正常

复制代码
# 指定GEO数据集的ID
gse_id <- "GSE29044"

# 使用getGEO函数获取数据集的基础信息,下载数据
gse_info <- getGEO(gse_id, destdir = ".", AnnotGPL = FALSE ,getGPL = F)


#提取临床信息 方法一:$或者@ ,配合str()观察结构
pdata = gse_info$GSE29044_series_matrix.txt.gz@phenoData@data
value_counts <- table(pdata$source_name_ch1)
value_counts #这里的数据就是疾病或者样本统计了

参考文章:

数据下载与处理(主要看的这个)-链接

数据处理-链接

相关推荐
BuLingLings2 分钟前
vue3_flask实现mysql数据库对比功能
数据库·mysql·flask·vue
未来影子7 分钟前
面试中的线程题
java·数据库·面试
我的老子姓彭16 分钟前
LWIP的NETCONN接口
笔记·lwip
幼稚诠释青春18 分钟前
Java API学习笔记
笔记·学习
GoWjw1 小时前
Linux虚拟文件系统(1)
运维·服务器·数据库
朱友斌1 小时前
【Golang笔记01】Golang基础语法规则
笔记·学习·golang·go语言·golang笔记
摇摇奶昔x1 小时前
webpack 学习
前端·学习·webpack
栀栀栀栀栀栀1 小时前
2025/5/18
笔记
海尔辛1 小时前
学习黑客Kerberos深入浅出:安全王国的门票系统
学习·安全·kerberos·window
霸王蟹1 小时前
React 19中如何向Vue那样自定义状态和方法暴露给父组件。
前端·javascript·学习·react.js·typescript