秃姐学AI系列之:实战Kaggle比赛:狗的品种识别(ImageNet Dogs)

目录

前置准备

整理数据集

图片增广

读取数据集

微调预训练模型

训练函数

训练和验证模型

Kaggle提交结果


前置准备

常规导包

python 复制代码
import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

使用小规模数据样本

python 复制代码
d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip',
                            '0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')

# 如果使用Kaggle比赛的完整数据集,请将下面的变量更改为False
demo = True
if demo:
    data_dir = d2l.download_extract('dog_tiny')
else:
    data_dir = os.path.join('..', 'data', 'dog-breed-identification')

整理数据集

复用上一个 CIFAR-10 的处理一样,即从原始训练集中拆分验证集,然后将图像移动到按标签分组的子文件夹中。

下面的reorg_dog_data函数读取训练数据标签、拆分验证集并整理训练集。

python 复制代码
def reorg_dog_data(data_dir, valid_ratio):
    labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))
    d2l.reorg_train_valid(data_dir, labels, valid_ratio)
    d2l.reorg_test(data_dir)


batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_dog_data(data_dir, valid_ratio)

图片增广

这个狗品种数据集是 ImageNet 数据集的子集,其图像大于 CIFAR-10 数据集的图像。

python 复制代码
transform_train = torchvision.transforms.Compose([
    # 随机裁剪图像,所得图像为原始面积的0.08~1之间,高宽比在3/4和4/3之间。
    # 然后,缩放图像以创建224x224的新图像
    torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),
                                             ratio=(3.0/4.0, 4.0/3.0)),
    torchvision.transforms.RandomHorizontalFlip(),
    # 随机更改亮度,对比度和饱和度
    torchvision.transforms.ColorJitter(brightness=0.4,
                                       contrast=0.4,
                                       saturation=0.4),
    # 添加随机噪声
    torchvision.transforms.ToTensor(),
    # 标准化图像的每个通道
    torchvision.transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])])

# 测试时,我们只使用确定性的图像预处理操作
transform_test = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256),
    # 从图像中心裁切224x224大小的图片
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])])

读取数据集

都和 CIFAR-10一样

python 复制代码
train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(
    os.path.join(data_dir, 'train_valid_test', folder),
    transform=transform_train) for folder in ['train', 'train_valid']]

valid_ds, test_ds = [torchvision.datasets.ImageFolder(
    os.path.join(data_dir, 'train_valid_test', folder),
    transform=transform_test) for folder in ['valid', 'test']]

train_iter, train_valid_iter = [torch.utils.data.DataLoader(
    dataset, batch_size, shuffle=True, drop_last=True)
    for dataset in (train_ds, train_valid_ds)]

valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,
                                         drop_last=True)

test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,
                                        drop_last=False)

微调预训练模型

同样,本次比赛的数据集是ImageNet数据集的子集。 因此,我们可以使用 微调中讨论的方法在完整ImageNet数据集上选择预训练的模型,然后使用该模型提取图像特征,以便将其输入到定制的小规模输出网络中。

深度学习框架的高级API提供了在ImageNet数据集上预训练的各种模型。 在这里,我们选择预训练的ResNet-34模型,我们只需重复使用此模型的输出层(即提取的特征)的输入。 然后,我们可以用一个可以训练的小型自定义输出网络替换原始输出层,例如堆叠两个完全连接的图层。

python 复制代码
def get_net(devices):
    finetune_net = nn.Sequential()
    finetune_net.features = torchvision.models.resnet34(pretrained=True)
    # 定义一个新的输出网络,共有120个输出类别
    finetune_net.output_new = nn.Sequential(nn.Linear(1000, 256),
                                            nn.ReLU(),
                                            nn.Linear(256, 120))
    # 将模型参数分配给用于计算的CPU或GPU
    finetune_net = finetune_net.to(devices[0])
    # 冻结参数
    for param in finetune_net.features.parameters():
        param.requires_grad = False
    return finetune_net

在计算损失之前,我们首先获取预训练模型的输出层的输入,即提取的特征。 然后我们使用此特征作为我们小型自定义输出网络的输入来计算损失。

python 复制代码
loss = nn.CrossEntropyLoss(reduction='none')

def evaluate_loss(data_iter, net, devices):
    l_sum, n = 0.0, 0
    for features, labels in data_iter:
        features, labels = features.to(devices[0]), labels.to(devices[0])
        outputs = net(features)
        l = loss(outputs, labels)
        l_sum += l.sum()
        n += labels.numel()
    return (l_sum / n).to('cpu')

训练函数

模型训练函数train只迭代小型自定义输出网络的参数

python 复制代码
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
          lr_decay):
    # 只训练小型自定义输出网络
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    trainer = torch.optim.SGD((param for param in net.parameters()
                               if param.requires_grad), lr=lr,
                              momentum=0.9, weight_decay=wd)
    scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)
    num_batches, timer = len(train_iter), d2l.Timer()
    legend = ['train loss']
    if valid_iter is not None:
        legend.append('valid loss')
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=legend)
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(2)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            features, labels = features.to(devices[0]), labels.to(devices[0])
            trainer.zero_grad()
            output = net(features)
            l = loss(output, labels).sum()
            l.backward()
            trainer.step()
            metric.add(l, labels.shape[0])
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[1], None))
        measures = f'train loss {metric[0] / metric[1]:.3f}'
        if valid_iter is not None:
            valid_loss = evaluate_loss(valid_iter, net, devices)
            animator.add(epoch + 1, (None, valid_loss.detach().cpu()))
        scheduler.step()
    if valid_iter is not None:
        measures += f', valid loss {valid_loss:.3f}'
    print(measures + f'\n{metric[1] * num_epochs / timer.sum():.1f}'
          f' examples/sec on {str(devices)}')

训练和验证模型

现在我们可以训练和验证模型了,以下超参数都是可调的。 例如,我们可以增加迭代轮数。 另外,由于lr_periodlr_decay分别设置为2和0.9, 因此优化算法的学习速率将在每2个迭代后乘以0.9。

python 复制代码
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 10, 1e-4, 1e-4
lr_period, lr_decay, net = 2, 0.9, get_net(devices)
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
      lr_decay)

Kaggle提交结果

最终所有标记的数据(包括验证集)都用于训练模型和对测试集进行分类。 我们将使用训练好的自定义输出网络进行分类。

python 复制代码
net = get_net(devices)
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,
      lr_decay)

preds = []
for data, label in test_iter:
    output = torch.nn.functional.softmax(net(data.to(devices[0])), dim=1)
    preds.extend(output.cpu().detach().numpy())
ids = sorted(os.listdir(
    os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')))
with open('submission.csv', 'w') as f:
    f.write('id,' + ','.join(train_valid_ds.classes) + '\n')
    for i, output in zip(ids, preds):
        f.write(i.split('.')[0] + ',' + ','.join(
            [str(num) for num in output]) + '\n')
相关推荐
北京耐用通信12 分钟前
告别“牵一发而动全身”:耐达讯自动化Profibus PA分线器为石化流量计网络构筑安全屏障
人工智能·网络协议·安全·自动化·信息与通信
ziwu13 分钟前
海洋生物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
WWZZ202529 分钟前
快速上手大模型:深度学习12(目标检测、语义分割、序列模型)
深度学习·算法·目标检测·计算机视觉·机器人·大模型·具身智能
luoganttcc39 分钟前
RoboTron-Drive:自动驾驶领域的全能多模态大模型
人工智能·机器学习·自动驾驶
向阳逐梦1 小时前
DC-DC Buck 电路(降压转换器)全面解析
人工智能·算法
xcLeigh1 小时前
AI的提示词专栏:“Prompt Chaining”把多个 Prompt 串联成工作流
人工智能·ai·prompt·提示词·工作流
是店小二呀1 小时前
AI模型练好了却传不出去?这两个工具帮你破局
人工智能
galaxylove1 小时前
Gartner发布2025年人工智能和网络安全技术成熟度曲线:网络安全领域对AI的期望值达到顶峰
人工智能·安全·web安全
galaxylove2 小时前
Gartner发布CISO人工智能安全指南:将AI安全治理融入所有网络安全治理体系
人工智能·安全·web安全