秃姐学AI系列之:实战Kaggle比赛:狗的品种识别(ImageNet Dogs)

目录

前置准备

整理数据集

图片增广

读取数据集

微调预训练模型

训练函数

训练和验证模型

Kaggle提交结果


前置准备

常规导包

python 复制代码
import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

使用小规模数据样本

python 复制代码
d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip',
                            '0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')

# 如果使用Kaggle比赛的完整数据集,请将下面的变量更改为False
demo = True
if demo:
    data_dir = d2l.download_extract('dog_tiny')
else:
    data_dir = os.path.join('..', 'data', 'dog-breed-identification')

整理数据集

复用上一个 CIFAR-10 的处理一样,即从原始训练集中拆分验证集,然后将图像移动到按标签分组的子文件夹中。

下面的reorg_dog_data函数读取训练数据标签、拆分验证集并整理训练集。

python 复制代码
def reorg_dog_data(data_dir, valid_ratio):
    labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))
    d2l.reorg_train_valid(data_dir, labels, valid_ratio)
    d2l.reorg_test(data_dir)


batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_dog_data(data_dir, valid_ratio)

图片增广

这个狗品种数据集是 ImageNet 数据集的子集,其图像大于 CIFAR-10 数据集的图像。

python 复制代码
transform_train = torchvision.transforms.Compose([
    # 随机裁剪图像,所得图像为原始面积的0.08~1之间,高宽比在3/4和4/3之间。
    # 然后,缩放图像以创建224x224的新图像
    torchvision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),
                                             ratio=(3.0/4.0, 4.0/3.0)),
    torchvision.transforms.RandomHorizontalFlip(),
    # 随机更改亮度,对比度和饱和度
    torchvision.transforms.ColorJitter(brightness=0.4,
                                       contrast=0.4,
                                       saturation=0.4),
    # 添加随机噪声
    torchvision.transforms.ToTensor(),
    # 标准化图像的每个通道
    torchvision.transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])])

# 测试时,我们只使用确定性的图像预处理操作
transform_test = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256),
    # 从图像中心裁切224x224大小的图片
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])])

读取数据集

都和 CIFAR-10一样

python 复制代码
train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(
    os.path.join(data_dir, 'train_valid_test', folder),
    transform=transform_train) for folder in ['train', 'train_valid']]

valid_ds, test_ds = [torchvision.datasets.ImageFolder(
    os.path.join(data_dir, 'train_valid_test', folder),
    transform=transform_test) for folder in ['valid', 'test']]

train_iter, train_valid_iter = [torch.utils.data.DataLoader(
    dataset, batch_size, shuffle=True, drop_last=True)
    for dataset in (train_ds, train_valid_ds)]

valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,
                                         drop_last=True)

test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,
                                        drop_last=False)

微调预训练模型

同样,本次比赛的数据集是ImageNet数据集的子集。 因此,我们可以使用 微调中讨论的方法在完整ImageNet数据集上选择预训练的模型,然后使用该模型提取图像特征,以便将其输入到定制的小规模输出网络中。

深度学习框架的高级API提供了在ImageNet数据集上预训练的各种模型。 在这里,我们选择预训练的ResNet-34模型,我们只需重复使用此模型的输出层(即提取的特征)的输入。 然后,我们可以用一个可以训练的小型自定义输出网络替换原始输出层,例如堆叠两个完全连接的图层。

python 复制代码
def get_net(devices):
    finetune_net = nn.Sequential()
    finetune_net.features = torchvision.models.resnet34(pretrained=True)
    # 定义一个新的输出网络,共有120个输出类别
    finetune_net.output_new = nn.Sequential(nn.Linear(1000, 256),
                                            nn.ReLU(),
                                            nn.Linear(256, 120))
    # 将模型参数分配给用于计算的CPU或GPU
    finetune_net = finetune_net.to(devices[0])
    # 冻结参数
    for param in finetune_net.features.parameters():
        param.requires_grad = False
    return finetune_net

在计算损失之前,我们首先获取预训练模型的输出层的输入,即提取的特征。 然后我们使用此特征作为我们小型自定义输出网络的输入来计算损失。

python 复制代码
loss = nn.CrossEntropyLoss(reduction='none')

def evaluate_loss(data_iter, net, devices):
    l_sum, n = 0.0, 0
    for features, labels in data_iter:
        features, labels = features.to(devices[0]), labels.to(devices[0])
        outputs = net(features)
        l = loss(outputs, labels)
        l_sum += l.sum()
        n += labels.numel()
    return (l_sum / n).to('cpu')

训练函数

模型训练函数train只迭代小型自定义输出网络的参数

python 复制代码
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
          lr_decay):
    # 只训练小型自定义输出网络
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    trainer = torch.optim.SGD((param for param in net.parameters()
                               if param.requires_grad), lr=lr,
                              momentum=0.9, weight_decay=wd)
    scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)
    num_batches, timer = len(train_iter), d2l.Timer()
    legend = ['train loss']
    if valid_iter is not None:
        legend.append('valid loss')
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=legend)
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(2)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            features, labels = features.to(devices[0]), labels.to(devices[0])
            trainer.zero_grad()
            output = net(features)
            l = loss(output, labels).sum()
            l.backward()
            trainer.step()
            metric.add(l, labels.shape[0])
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[1], None))
        measures = f'train loss {metric[0] / metric[1]:.3f}'
        if valid_iter is not None:
            valid_loss = evaluate_loss(valid_iter, net, devices)
            animator.add(epoch + 1, (None, valid_loss.detach().cpu()))
        scheduler.step()
    if valid_iter is not None:
        measures += f', valid loss {valid_loss:.3f}'
    print(measures + f'\n{metric[1] * num_epochs / timer.sum():.1f}'
          f' examples/sec on {str(devices)}')

训练和验证模型

现在我们可以训练和验证模型了,以下超参数都是可调的。 例如,我们可以增加迭代轮数。 另外,由于lr_periodlr_decay分别设置为2和0.9, 因此优化算法的学习速率将在每2个迭代后乘以0.9。

python 复制代码
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 10, 1e-4, 1e-4
lr_period, lr_decay, net = 2, 0.9, get_net(devices)
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
      lr_decay)

Kaggle提交结果

最终所有标记的数据(包括验证集)都用于训练模型和对测试集进行分类。 我们将使用训练好的自定义输出网络进行分类。

python 复制代码
net = get_net(devices)
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,
      lr_decay)

preds = []
for data, label in test_iter:
    output = torch.nn.functional.softmax(net(data.to(devices[0])), dim=1)
    preds.extend(output.cpu().detach().numpy())
ids = sorted(os.listdir(
    os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')))
with open('submission.csv', 'w') as f:
    f.write('id,' + ','.join(train_valid_ds.classes) + '\n')
    for i, output in zip(ids, preds):
        f.write(i.split('.')[0] + ',' + ','.join(
            [str(num) for num in output]) + '\n')
相关推荐
繁依Fanyi10 分钟前
828 华为云征文|华为 Flexus 云服务器部署 RustDesk Server,打造自己的远程桌面服务器
运维·服务器·开发语言·人工智能·pytorch·华为·华为云
shuxianshrng12 分钟前
鹰眼降尘系统怎么样
大数据·服务器·人工智能·数码相机·物联网
说私域16 分钟前
开源 AI 智能名片小程序:开启内容营销新境界
人工智能·小程序
红米煮粥22 分钟前
OpenCV-直方图
人工智能·opencv·计算机视觉
隔窗听雨眠29 分钟前
计算机视觉学习路线
计算机视觉
DisonTangor41 分钟前
上海人工智能实验室开源视频生成模型Vchitect 2.0 可生成20秒高清视频
人工智能·音视频
科技评论AI42 分钟前
Adobe预览今年晚些时候推出的AI视频工具
人工智能·adobe
美狐美颜sdk43 分钟前
探索视频美颜SDK与直播美颜工具的开发实践方案
人工智能·计算机视觉·音视频·直播美颜sdk·视频美颜sdk
极术社区1 小时前
ResNeXt学习
开发语言·学习·计算机视觉·php
kay_5451 小时前
YOLOv8改进 | 模块缝合 | C2f 融合SCConv提升检测性能【CVPR2023】
人工智能·python·深度学习·yolo·目标检测·面试·yolov8改进