技术美术百人计划 | 《4.1 Bloom算法》笔记

1. Bloom算法介绍

1.1. Bloom效果

实际拍摄照片与游戏画面Bloom效果对比,Bloom模拟了真实世界图片的效果

Bloom流程图

1.2. 前置知识:HDR和LDR,高斯模糊

1.2.1. HDR和LDR

LDR颜色范围太少,精度不够,往往会存在颜色精度范围的丢失。

1.2.2. 高斯模糊

1.2.2.1. 卷积与卷积核

首先了解卷积是什么?

图像卷积操作(convolution),或称为核操作(kernel),是进行图像处理的一种常用手段。图像卷积操作的目的是利用像素点和其邻域像素之前的空间关系,通过加权求和的操作,实现模糊(blurring),锐化(sharpening),边缘检测(edge detection)等功能。图像卷积的计算过程就是卷积核按步长对图像局部像素块进行加权求和的过程。

卷积核实质上是一个固定大小的权重数组,该数组中的锚点通常位于中心。通常情况下,选取卷积核大小为1x1,3x3,5x5,7x7等。取奇数大小的目的是为了设置卷积核中心为锚点,方便卷积核和图像的对齐处理。设置卷积核大小对称的目的是为了在空间域中充分利用像素点和其领域像素间的关系。当然这不是必须的,如果需要针对某一轴进行处理,可以设置1x3或3x1大小。

卷积计算过程

1.2.2.2. 高斯核

高斯核是通过高斯函数定义的卷积核。核中心:(0,0),核大小:3x3,标准方差σ:1.5

计算步骤:

  1. 将(x,y)带入高斯计算公式中,计算出权重值G(x,y)(权重值代表当前处理像素的影响程度,离中心越近权重越大)
  1. 为了保证卷积后图像不变暗,需要对高斯核进行归一化处理(每个权重除以所有权重的和)

但是二维高斯核的计算量大,N×N的高斯核需要N*N*W*H次纹理采样。怎么办?

分离高斯核。二维高斯核具有可分离性,可以拆成两个一维高斯核。

利用可分离性,我们就可以优化算法。可以用两个一维高斯核先后对图像进行两次卷积操作,这样一来,结果一样,采样次数为2*N*W*H。

再进一步,分离出来的一维高斯核中包括了很多重复的权重。下例中大小为5的高斯核,实际上只需要记录三个权重值即可(0.0545、0.2442、0.4026)。

2. Bloom算法实现

  1. 脚本:采用OnRenderImage()函数执行四个pass,进行后处理

注意采用双缓冲,创建中间纹理

  1. Shader部分:

使用4个pass完成bloom效果,对应bloom的实现步骤

  • pass1:提取亮部区域
  • pass2:实现竖直方向的高斯模糊
  • pass3:实现水平方向的高斯模糊
  • pass4:模糊后的高亮区域叠加到原图
相关推荐
童话名剑3 小时前
训练词嵌入(吴恩达深度学习笔记)
人工智能·深度学习·word2vec·词嵌入·负采样·嵌入矩阵·glove算法
桂花很香,旭很美3 小时前
智能体技术架构:从分类、选型到落地
人工智能·架构
AIGCmitutu4 小时前
Ps怎么把图片2D转3D?新手图文详细教程!
计算机视觉·photoshop·ps·美工
HelloWorld__来都来了4 小时前
2026.1.30 本周学术科研热点TOP5
人工智能·科研
aihuangwu4 小时前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
YMWM_5 小时前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐5 小时前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
九尾狐ai5 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_948120155 小时前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
(; ̄ェ ̄)。5 小时前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习