001.从0开始实现线性回归(pytorch)

000动手从0实现线性回归

0. 背景介绍

我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。

设训练数据集样本数为1000,输入个数(特征数)为2。给定随机生成的批量样本特征 X∈R1000×2

X∈R 1000×2 ,我们使用线性回归模型真实权重 w=[2,−3.4]⊤ 和偏差 b=4.2以及一个随机噪声项 ϵϵ 来生成标签

python 复制代码
# 需要导入的包
import numpy as np
import torch
import random
from d2l import torch as d2l
from IPython import display
from matplotlib import pyplot as plt

1. 生成数据集合(待拟合)

使用python生成待拟合的数据

python 复制代码
num_input = 2
num_example = 1000
w_true = [2,-3.4]
b_true = 4.2
features = torch.randn(num_example,num_input)
print('features.shape = '+ str(features.shape) )
labels =  w_true[0] * features[:,0] + w_true[1] * features[:,1] + b_true
labels += torch.tensor(np.random.normal(0,0.01 , size = labels.size() ),dtype = torch.float32)
print(features[0],labels[0])

2.数据的分批量处理

python 复制代码
def data_iter(batch_size, features, labels):
    num_example = len(labels)
    indices = list(range(num_example))
    random.shuffle(indices)
    for i in range(0, num_example, batch_size):
        j = torch.tensor( indices[i:min(i+ batch_size,num_example)])
        yield features.index_select(0,j) ,labels.index_select(0,j)

3. 模型构建及训练

3.1 定义模型:

python 复制代码
def linreg(X, w, b):
    return torch.mm(X,w)+b

3.2 定义损失函数

python 复制代码
def square_loss(y, y_hat):
    return (y_hat - y.view(y_hat.size()))**2/2

3.3 定义优化算法

python 复制代码
def sgd(params , lr ,batch_size):
    for param in params:
        param.data  -= lr * param.grad / batch_size

3.4 模型训练

python 复制代码
# 设置超参数
lr = 0.03
num_epochs =5
net = linreg
loss = square_loss
batch_size = 10
for epoch in range(num_epochs):
    for X,y in data_iter(batch_size= batch_size,features=features,labels= labels):
        l = loss(net(X,w,b),y).sum()
        l.backward()
        sgd([w,b],lr,batch_size=batch_size)
        #梯度清零避免梯度累加
        w.grad.data.zero_()
        b.grad.data.zero_()
    train_l = loss(net(features,w,b),labels)
    print('epoch %d, loss %f' %(epoch +1 ,train_l.mean().item()))

epoch 1, loss 0.032550

epoch 2, loss 0.000133

epoch 3, loss 0.000053

epoch 4, loss 0.000053

epoch 5, loss 0.000053


基于pytorch的线性模型的实现

  1. 相关数据和初始化与上面构建相同
  2. 定义模型
python 复制代码
import torch
from torch import nn
class LinearNet(nn.Module):
    def __init__(self, n_feature):
        # 调用父类的初始化
        super(LinearNet,self).__init__()
        # Linear(输入特征数,输出特征的数量,是否含有偏置项)
        self.linera = nn.Linear(n_feature,1)

    def forward(self,x):
        y = self.linera(x)
        return y
#打印模型的结构:
net = LinearNet(num_input)
print(net) 
# LinearNet( (linera): Linear(in_features=2, out_features=1, bias=True)
)
  1. 初始化模型的参数
python 复制代码
from torch.nn import init
init.normal_(net.linera.weight,mean=0,std= 0.1)
init.constant_(net.linera.bias ,val=0)
  1. 定义损失函数

    loss = nn.MSELoss()

5.定义优化算法

python 复制代码
import torch.optim as optim
optimizer =  optim.SGD(net.parameters(),lr = 0.03)
print(optimizer)
  1. 训练模型:
python 复制代码
num_epochs = 3
for epoch in range(1,num_epochs+1):
    for X,y in data_iter(batch_size= batch_size,features=features,labels= labels):
        output= net(X)
        l = loss(output,y.view(-1,1))
        optimizer.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d ,loss: %f' %(epoch,l.item()) )

epoch 1 ,loss: 0.000159

epoch 2 ,loss: 0.000089

epoch 3 ,loss: 0.000066

相关推荐
摘取一颗天上星️1 小时前
端到端记忆网络 vs 神经图灵机:外部记忆的两种哲学之争
网络·人工智能·深度学习·机器学习·lstm·外部记忆
vlln1 小时前
【论文解读】rStar:用互洽方法增强 SLM(小型语言模型) 推理能力
人工智能·深度学习·语言模型·自然语言处理·transformer
勤奋的知更鸟2 小时前
一起来入门深度学习知识体系
人工智能·深度学习
羞儿3 小时前
【读点论文】A Survey on Open-Set Image Recognition
深度学习·图像分类·开放集识别问题·原型学习
Takina~4 小时前
python打卡day53
python·深度学习·机器学习
Blossom.1184 小时前
基于深度学习的智能图像分类系统:从零开始构建
开发语言·人工智能·python·深度学习·神经网络·机器学习·分类
jieshenai4 小时前
torch 高维矩阵乘法分析,一文说透
pytorch·深度学习·矩阵
codegarfield4 小时前
YOLO11中的C3K2模块
人工智能·深度学习·yolo·c3k2
要努力啊啊啊5 小时前
YOLOv2 中非极大值抑制(NMS)机制详解与实现
人工智能·深度学习·yolo·计算机视觉·目标跟踪
勤奋的知更鸟8 小时前
深度学习神经网络架构Transformer深刻理解
深度学习·神经网络·transformer