001.从0开始实现线性回归(pytorch)

000动手从0实现线性回归

0. 背景介绍

我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。

设训练数据集样本数为1000,输入个数(特征数)为2。给定随机生成的批量样本特征 X∈R1000×2

X∈R 1000×2 ,我们使用线性回归模型真实权重 w=[2,−3.4]⊤ 和偏差 b=4.2以及一个随机噪声项 ϵϵ 来生成标签

python 复制代码
# 需要导入的包
import numpy as np
import torch
import random
from d2l import torch as d2l
from IPython import display
from matplotlib import pyplot as plt

1. 生成数据集合(待拟合)

使用python生成待拟合的数据

python 复制代码
num_input = 2
num_example = 1000
w_true = [2,-3.4]
b_true = 4.2
features = torch.randn(num_example,num_input)
print('features.shape = '+ str(features.shape) )
labels =  w_true[0] * features[:,0] + w_true[1] * features[:,1] + b_true
labels += torch.tensor(np.random.normal(0,0.01 , size = labels.size() ),dtype = torch.float32)
print(features[0],labels[0])

2.数据的分批量处理

python 复制代码
def data_iter(batch_size, features, labels):
    num_example = len(labels)
    indices = list(range(num_example))
    random.shuffle(indices)
    for i in range(0, num_example, batch_size):
        j = torch.tensor( indices[i:min(i+ batch_size,num_example)])
        yield features.index_select(0,j) ,labels.index_select(0,j)

3. 模型构建及训练

3.1 定义模型:

python 复制代码
def linreg(X, w, b):
    return torch.mm(X,w)+b

3.2 定义损失函数

python 复制代码
def square_loss(y, y_hat):
    return (y_hat - y.view(y_hat.size()))**2/2

3.3 定义优化算法

python 复制代码
def sgd(params , lr ,batch_size):
    for param in params:
        param.data  -= lr * param.grad / batch_size

3.4 模型训练

python 复制代码
# 设置超参数
lr = 0.03
num_epochs =5
net = linreg
loss = square_loss
batch_size = 10
for epoch in range(num_epochs):
    for X,y in data_iter(batch_size= batch_size,features=features,labels= labels):
        l = loss(net(X,w,b),y).sum()
        l.backward()
        sgd([w,b],lr,batch_size=batch_size)
        #梯度清零避免梯度累加
        w.grad.data.zero_()
        b.grad.data.zero_()
    train_l = loss(net(features,w,b),labels)
    print('epoch %d, loss %f' %(epoch +1 ,train_l.mean().item()))

epoch 1, loss 0.032550

epoch 2, loss 0.000133

epoch 3, loss 0.000053

epoch 4, loss 0.000053

epoch 5, loss 0.000053


基于pytorch的线性模型的实现

  1. 相关数据和初始化与上面构建相同
  2. 定义模型
python 复制代码
import torch
from torch import nn
class LinearNet(nn.Module):
    def __init__(self, n_feature):
        # 调用父类的初始化
        super(LinearNet,self).__init__()
        # Linear(输入特征数,输出特征的数量,是否含有偏置项)
        self.linera = nn.Linear(n_feature,1)

    def forward(self,x):
        y = self.linera(x)
        return y
#打印模型的结构:
net = LinearNet(num_input)
print(net) 
# LinearNet( (linera): Linear(in_features=2, out_features=1, bias=True)
)
  1. 初始化模型的参数
python 复制代码
from torch.nn import init
init.normal_(net.linera.weight,mean=0,std= 0.1)
init.constant_(net.linera.bias ,val=0)
  1. 定义损失函数

    loss = nn.MSELoss()

5.定义优化算法

python 复制代码
import torch.optim as optim
optimizer =  optim.SGD(net.parameters(),lr = 0.03)
print(optimizer)
  1. 训练模型:
python 复制代码
num_epochs = 3
for epoch in range(1,num_epochs+1):
    for X,y in data_iter(batch_size= batch_size,features=features,labels= labels):
        output= net(X)
        l = loss(output,y.view(-1,1))
        optimizer.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d ,loss: %f' %(epoch,l.item()) )

epoch 1 ,loss: 0.000159

epoch 2 ,loss: 0.000089

epoch 3 ,loss: 0.000066

相关推荐
冰西瓜60037 分钟前
深度学习的数学原理(九)—— 神经网络为什么能学习特征?
深度学习·神经网络·学习
Suryxin.1 小时前
从0开始复现nano-vllm「model_runner-py」下半篇之核心数据编排与执行引擎调度
人工智能·pytorch·深度学习·ai·vllm
Clarence Liu1 小时前
用大白话讲解人工智能(8) 循环神经网络(RNN):AI怎么“听懂“语音
人工智能·rnn·深度学习
Clarence Liu10 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
冰西瓜60011 小时前
深度学习的数学原理(七)—— 优化器:从SGD到Adam
人工智能·深度学习
过期的秋刀鱼!13 小时前
神经网络-代码中的推理
人工智能·深度学习·神经网络
2401_8288906413 小时前
实现扩散模型 Stable Diffusion - MNIST 数据集
人工智能·python·深度学习·stable diffusion
Zzz 小生15 小时前
LangChain models:模型使用完全指南
人工智能·深度学习·机器学习
码农小韩17 小时前
AIAgent应用开发——DeepSeek分析(二)
人工智能·python·深度学习·agent·强化学习·deepseek
冰西瓜60017 小时前
深度学习的数学原理(八)—— 过拟合与正则化
人工智能·深度学习