001.从0开始实现线性回归(pytorch)

000动手从0实现线性回归

0. 背景介绍

我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。

设训练数据集样本数为1000,输入个数(特征数)为2。给定随机生成的批量样本特征 X∈R1000×2

X∈R 1000×2 ,我们使用线性回归模型真实权重 w=[2,−3.4]⊤ 和偏差 b=4.2以及一个随机噪声项 ϵϵ 来生成标签

python 复制代码
# 需要导入的包
import numpy as np
import torch
import random
from d2l import torch as d2l
from IPython import display
from matplotlib import pyplot as plt

1. 生成数据集合(待拟合)

使用python生成待拟合的数据

python 复制代码
num_input = 2
num_example = 1000
w_true = [2,-3.4]
b_true = 4.2
features = torch.randn(num_example,num_input)
print('features.shape = '+ str(features.shape) )
labels =  w_true[0] * features[:,0] + w_true[1] * features[:,1] + b_true
labels += torch.tensor(np.random.normal(0,0.01 , size = labels.size() ),dtype = torch.float32)
print(features[0],labels[0])

2.数据的分批量处理

python 复制代码
def data_iter(batch_size, features, labels):
    num_example = len(labels)
    indices = list(range(num_example))
    random.shuffle(indices)
    for i in range(0, num_example, batch_size):
        j = torch.tensor( indices[i:min(i+ batch_size,num_example)])
        yield features.index_select(0,j) ,labels.index_select(0,j)

3. 模型构建及训练

3.1 定义模型:

python 复制代码
def linreg(X, w, b):
    return torch.mm(X,w)+b

3.2 定义损失函数

python 复制代码
def square_loss(y, y_hat):
    return (y_hat - y.view(y_hat.size()))**2/2

3.3 定义优化算法

python 复制代码
def sgd(params , lr ,batch_size):
    for param in params:
        param.data  -= lr * param.grad / batch_size

3.4 模型训练

python 复制代码
# 设置超参数
lr = 0.03
num_epochs =5
net = linreg
loss = square_loss
batch_size = 10
for epoch in range(num_epochs):
    for X,y in data_iter(batch_size= batch_size,features=features,labels= labels):
        l = loss(net(X,w,b),y).sum()
        l.backward()
        sgd([w,b],lr,batch_size=batch_size)
        #梯度清零避免梯度累加
        w.grad.data.zero_()
        b.grad.data.zero_()
    train_l = loss(net(features,w,b),labels)
    print('epoch %d, loss %f' %(epoch +1 ,train_l.mean().item()))

epoch 1, loss 0.032550

epoch 2, loss 0.000133

epoch 3, loss 0.000053

epoch 4, loss 0.000053

epoch 5, loss 0.000053


基于pytorch的线性模型的实现

  1. 相关数据和初始化与上面构建相同
  2. 定义模型
python 复制代码
import torch
from torch import nn
class LinearNet(nn.Module):
    def __init__(self, n_feature):
        # 调用父类的初始化
        super(LinearNet,self).__init__()
        # Linear(输入特征数,输出特征的数量,是否含有偏置项)
        self.linera = nn.Linear(n_feature,1)

    def forward(self,x):
        y = self.linera(x)
        return y
#打印模型的结构:
net = LinearNet(num_input)
print(net) 
# LinearNet( (linera): Linear(in_features=2, out_features=1, bias=True)
)
  1. 初始化模型的参数
python 复制代码
from torch.nn import init
init.normal_(net.linera.weight,mean=0,std= 0.1)
init.constant_(net.linera.bias ,val=0)
  1. 定义损失函数

    loss = nn.MSELoss()

5.定义优化算法

python 复制代码
import torch.optim as optim
optimizer =  optim.SGD(net.parameters(),lr = 0.03)
print(optimizer)
  1. 训练模型:
python 复制代码
num_epochs = 3
for epoch in range(1,num_epochs+1):
    for X,y in data_iter(batch_size= batch_size,features=features,labels= labels):
        output= net(X)
        l = loss(output,y.view(-1,1))
        optimizer.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d ,loss: %f' %(epoch,l.item()) )

epoch 1 ,loss: 0.000159

epoch 2 ,loss: 0.000089

epoch 3 ,loss: 0.000066

相关推荐
哥布林学者2 小时前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架 课后习题和代码实践
深度学习·ai
WWZZ20252 小时前
快速上手大模型:深度学习11(数据增强、微调、目标检测)
人工智能·深度学习·算法·目标检测·计算机视觉·大模型·具身智能
6***37942 小时前
MySQLGraphQLAPI
线性回归·odps·iava-rocketma
安如衫2 小时前
【机器学习基础】Attention in Transformers:注意力机制
笔记·深度学习·学习·机器学习·注意力机制
CoovallyAIHub5 小时前
存储风暴下的边缘智能韧性:瑞芯微RK3588如何将供应链挑战转化为市场机遇
深度学习·算法·计算机视觉
孤狼warrior6 小时前
我想拥有作家的思想 循环神经网络及变型
人工智能·rnn·深度学习·神经网络·lstm
Dev7z7 小时前
智能情感识别:基于USB摄像头和深度学习的实时面部表情分析系统
人工智能·深度学习
FL16238631297 小时前
C# winform部署rf-detr目标检测的onnx模型
深度学习
斯文~7 小时前
【AI论文速递】SymAgent:知识图谱复杂推理的agent框架
人工智能·深度学习·llm·nlp·知识图谱
海边夕阳200614 小时前
【每天一个AI小知识】:什么是卷积神经网络?
人工智能·经验分享·深度学习·神经网络·机器学习·cnn