001.从0开始实现线性回归(pytorch)

000动手从0实现线性回归

0. 背景介绍

我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。

设训练数据集样本数为1000,输入个数(特征数)为2。给定随机生成的批量样本特征 X∈R1000×2

X∈R 1000×2 ,我们使用线性回归模型真实权重 w=[2,−3.4]⊤ 和偏差 b=4.2以及一个随机噪声项 ϵϵ 来生成标签

python 复制代码
# 需要导入的包
import numpy as np
import torch
import random
from d2l import torch as d2l
from IPython import display
from matplotlib import pyplot as plt

1. 生成数据集合(待拟合)

使用python生成待拟合的数据

python 复制代码
num_input = 2
num_example = 1000
w_true = [2,-3.4]
b_true = 4.2
features = torch.randn(num_example,num_input)
print('features.shape = '+ str(features.shape) )
labels =  w_true[0] * features[:,0] + w_true[1] * features[:,1] + b_true
labels += torch.tensor(np.random.normal(0,0.01 , size = labels.size() ),dtype = torch.float32)
print(features[0],labels[0])

2.数据的分批量处理

python 复制代码
def data_iter(batch_size, features, labels):
    num_example = len(labels)
    indices = list(range(num_example))
    random.shuffle(indices)
    for i in range(0, num_example, batch_size):
        j = torch.tensor( indices[i:min(i+ batch_size,num_example)])
        yield features.index_select(0,j) ,labels.index_select(0,j)

3. 模型构建及训练

3.1 定义模型:

python 复制代码
def linreg(X, w, b):
    return torch.mm(X,w)+b

3.2 定义损失函数

python 复制代码
def square_loss(y, y_hat):
    return (y_hat - y.view(y_hat.size()))**2/2

3.3 定义优化算法

python 复制代码
def sgd(params , lr ,batch_size):
    for param in params:
        param.data  -= lr * param.grad / batch_size

3.4 模型训练

python 复制代码
# 设置超参数
lr = 0.03
num_epochs =5
net = linreg
loss = square_loss
batch_size = 10
for epoch in range(num_epochs):
    for X,y in data_iter(batch_size= batch_size,features=features,labels= labels):
        l = loss(net(X,w,b),y).sum()
        l.backward()
        sgd([w,b],lr,batch_size=batch_size)
        #梯度清零避免梯度累加
        w.grad.data.zero_()
        b.grad.data.zero_()
    train_l = loss(net(features,w,b),labels)
    print('epoch %d, loss %f' %(epoch +1 ,train_l.mean().item()))

epoch 1, loss 0.032550

epoch 2, loss 0.000133

epoch 3, loss 0.000053

epoch 4, loss 0.000053

epoch 5, loss 0.000053


基于pytorch的线性模型的实现

  1. 相关数据和初始化与上面构建相同
  2. 定义模型
python 复制代码
import torch
from torch import nn
class LinearNet(nn.Module):
    def __init__(self, n_feature):
        # 调用父类的初始化
        super(LinearNet,self).__init__()
        # Linear(输入特征数,输出特征的数量,是否含有偏置项)
        self.linera = nn.Linear(n_feature,1)

    def forward(self,x):
        y = self.linera(x)
        return y
#打印模型的结构:
net = LinearNet(num_input)
print(net) 
# LinearNet( (linera): Linear(in_features=2, out_features=1, bias=True)
)
  1. 初始化模型的参数
python 复制代码
from torch.nn import init
init.normal_(net.linera.weight,mean=0,std= 0.1)
init.constant_(net.linera.bias ,val=0)
  1. 定义损失函数

    loss = nn.MSELoss()

5.定义优化算法

python 复制代码
import torch.optim as optim
optimizer =  optim.SGD(net.parameters(),lr = 0.03)
print(optimizer)
  1. 训练模型:
python 复制代码
num_epochs = 3
for epoch in range(1,num_epochs+1):
    for X,y in data_iter(batch_size= batch_size,features=features,labels= labels):
        output= net(X)
        l = loss(output,y.view(-1,1))
        optimizer.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d ,loss: %f' %(epoch,l.item()) )

epoch 1 ,loss: 0.000159

epoch 2 ,loss: 0.000089

epoch 3 ,loss: 0.000066

相关推荐
Coovally AI模型快速验证9 分钟前
当小龙虾算法遇上YOLO:如何提升太阳能电池缺陷检测精度?
人工智能·深度学习·算法·yolo·目标检测·无人机
hzp6661 小时前
招牌红烧肉版-深度神经网络
人工智能·深度学习·神经网络·llm·aigc·dnn·反向传播
山野蓝莓酸奶昔2 小时前
InternNav 环境配置:Failed to build flash_attn解决办法
人工智能·深度学习
zcg19422 小时前
不用干净数据也能学会降噪——N2N派
深度学习·计算机视觉
阿正的梦工坊2 小时前
Rubicon论文数据部分详解:从Rubric设计到RL Pipeline的全流程
人工智能·深度学习·机器学习·语言模型·自然语言处理
Hcoco_me3 小时前
大模型面试题23:对比学习原理-从通俗理解到核心逻辑(通用AI视角)
人工智能·rnn·深度学习·学习·自然语言处理·word2vec
Java后端的Ai之路3 小时前
【神经网络基础】-神经网络优化方法全解析
人工智能·深度学习·神经网络·机器学习
高洁013 小时前
深度学习—卷积神经网络(2)
人工智能·深度学习·机器学习·transformer·知识图谱
软件算法开发4 小时前
基于蘑菇繁殖优化的LSTM深度学习网络模型(MRO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·算法·matlab·lstm·时间序列预测·蘑菇繁殖优化·mro-lstm
Dfreedom.5 小时前
第一阶段:U-net++的概况和核心价值
人工智能·深度学习·神经网络·计算机视觉·图像分割·u-net·u-net++