20240924 行列式为1的矩阵不一定是正交矩阵

行列式为1的矩阵不一定是正交矩阵。一个矩阵是正交矩阵需要满足两个条件:

  1. 它的转置等于它的逆,即 R ⊤ = R − 1 \boldsymbol{R}^\top = \boldsymbol{R}^{-1} R⊤=R−1。
  2. 它的行列式为1或-1,即 det ⁡ ( R ) = ± 1 \det(\boldsymbol{R}) = \pm 1 det(R)=±1。

如果仅满足第二个条件( det ⁡ ( R ) = 1 \det(\boldsymbol{R}) = 1 det(R)=1),但不满足第一个条件,那么该矩阵就不是正交矩阵。

反例:

考虑以下2x2矩阵:

A = ( 1 1 0 1 ) \boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} A=(1011)

这个矩阵的行列式为:

det ⁡ ( A ) = ( 1 ) ( 1 ) − ( 1 ) ( 0 ) = 1 \det(\boldsymbol{A}) = (1)(1) - (1)(0) = 1 det(A)=(1)(1)−(1)(0)=1

但是,(\boldsymbol{A}) 的转置和逆并不相等:

A ⊤ = ( 1 0 1 1 ) \boldsymbol{A}^\top = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} A⊤=(1101)

A − 1 = ( 1 − 1 0 1 ) \boldsymbol{A}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} A−1=(10−11)

显然, A ⊤ ≠ A − 1 \boldsymbol{A}^\top \neq \boldsymbol{A}^{-1} A⊤=A−1,因此 A \boldsymbol{A} A 不是正交矩阵。

这个例子说明了即使一个矩阵的行列式为1,它也不一定是正交矩阵。正交矩阵必须同时满足转置等于逆矩阵的条件。

相关推荐
songx_993 小时前
算法设计与分析7(贪心算法)
算法
aigonna3 小时前
Kimi 7B 语音转文字
算法
weixin_435208163 小时前
图解模型并行框架
人工智能·算法·语言模型·自然语言处理·aigc
东方翱翔4 小时前
第十六届蓝桥杯大赛软件赛省赛第二场 C/C++ 大学 A 组
算法·职场和发展·蓝桥杯
Blossom.1184 小时前
量子计算在密码学中的应用与挑战:重塑信息安全的未来
人工智能·深度学习·物联网·算法·密码学·量子计算·量子安全
1白天的黑夜14 小时前
贪心算法-860.柠檬水找零-力扣(LeetCode)
c++·算法·leetcode·贪心算法
搏博5 小时前
专家系统的基本概念解析——基于《人工智能原理与方法》的深度拓展
人工智能·python·深度学习·算法·机器学习·概率论
yzx9910135 小时前
决策树随机深林
人工智能·python·算法·决策树·机器学习
Y1nhl5 小时前
力扣hot100_子串_python版本
开发语言·python·算法·leetcode·职场和发展
uhakadotcom5 小时前
过来人给1-3 年技术新人的几点小小的建议,帮助你提升职场竞争力
算法·面试·架构