20240924 行列式为1的矩阵不一定是正交矩阵

行列式为1的矩阵不一定是正交矩阵。一个矩阵是正交矩阵需要满足两个条件:

  1. 它的转置等于它的逆,即 R ⊤ = R − 1 \boldsymbol{R}^\top = \boldsymbol{R}^{-1} R⊤=R−1。
  2. 它的行列式为1或-1,即 det ⁡ ( R ) = ± 1 \det(\boldsymbol{R}) = \pm 1 det(R)=±1。

如果仅满足第二个条件( det ⁡ ( R ) = 1 \det(\boldsymbol{R}) = 1 det(R)=1),但不满足第一个条件,那么该矩阵就不是正交矩阵。

反例:

考虑以下2x2矩阵:

A = ( 1 1 0 1 ) \boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} A=(1011)

这个矩阵的行列式为:

det ⁡ ( A ) = ( 1 ) ( 1 ) − ( 1 ) ( 0 ) = 1 \det(\boldsymbol{A}) = (1)(1) - (1)(0) = 1 det(A)=(1)(1)−(1)(0)=1

但是,(\boldsymbol{A}) 的转置和逆并不相等:

A ⊤ = ( 1 0 1 1 ) \boldsymbol{A}^\top = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} A⊤=(1101)

A − 1 = ( 1 − 1 0 1 ) \boldsymbol{A}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} A−1=(10−11)

显然, A ⊤ ≠ A − 1 \boldsymbol{A}^\top \neq \boldsymbol{A}^{-1} A⊤=A−1,因此 A \boldsymbol{A} A 不是正交矩阵。

这个例子说明了即使一个矩阵的行列式为1,它也不一定是正交矩阵。正交矩阵必须同时满足转置等于逆矩阵的条件。

相关推荐
PAK向日葵3 小时前
【算法导论】PDD 0817笔试题题解
算法·面试
地平线开发者6 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
地平线开发者6 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
星星火柴9367 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
艾莉丝努力练剑8 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
C++、Java和Python的菜鸟9 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀9 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散11210 小时前
01数据结构-Prim算法
数据结构·算法·图论
起个昵称吧10 小时前
线程相关编程、线程间通信、互斥锁
linux·算法
myzzb11 小时前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa