20240924 行列式为1的矩阵不一定是正交矩阵

行列式为1的矩阵不一定是正交矩阵。一个矩阵是正交矩阵需要满足两个条件:

  1. 它的转置等于它的逆,即 R ⊤ = R − 1 \boldsymbol{R}^\top = \boldsymbol{R}^{-1} R⊤=R−1。
  2. 它的行列式为1或-1,即 det ⁡ ( R ) = ± 1 \det(\boldsymbol{R}) = \pm 1 det(R)=±1。

如果仅满足第二个条件( det ⁡ ( R ) = 1 \det(\boldsymbol{R}) = 1 det(R)=1),但不满足第一个条件,那么该矩阵就不是正交矩阵。

反例:

考虑以下2x2矩阵:

A = ( 1 1 0 1 ) \boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} A=(1011)

这个矩阵的行列式为:

det ⁡ ( A ) = ( 1 ) ( 1 ) − ( 1 ) ( 0 ) = 1 \det(\boldsymbol{A}) = (1)(1) - (1)(0) = 1 det(A)=(1)(1)−(1)(0)=1

但是,(\boldsymbol{A}) 的转置和逆并不相等:

A ⊤ = ( 1 0 1 1 ) \boldsymbol{A}^\top = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} A⊤=(1101)

A − 1 = ( 1 − 1 0 1 ) \boldsymbol{A}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} A−1=(10−11)

显然, A ⊤ ≠ A − 1 \boldsymbol{A}^\top \neq \boldsymbol{A}^{-1} A⊤=A−1,因此 A \boldsymbol{A} A 不是正交矩阵。

这个例子说明了即使一个矩阵的行列式为1,它也不一定是正交矩阵。正交矩阵必须同时满足转置等于逆矩阵的条件。

相关推荐
~|Bernard|32 分钟前
在 PyCharm 里怎么“点鼠标”完成指令同样的运行操作
算法·conda
战术摸鱼大师34 分钟前
电机控制(四)-级联PID控制器与参数整定(MATLAB&Simulink)
算法·matlab·运动控制·电机控制
Christo337 分钟前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
阿巴Jun2 小时前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
好家伙VCC2 小时前
数学建模模型 全网最全 数学建模常见算法汇总 含代码分析讲解
大数据·嵌入式硬件·算法·数学建模
liulilittle3 小时前
IP校验和算法:从网络协议到SIMD深度优化
网络·c++·网络协议·tcp/ip·算法·ip·通信
bkspiderx5 小时前
C++经典的数据结构与算法之经典算法思想:贪心算法(Greedy)
数据结构·c++·算法·贪心算法
中华小当家呐6 小时前
算法之常见八大排序
数据结构·算法·排序算法
沐怡旸6 小时前
【算法--链表】114.二叉树展开为链表--通俗讲解
算法·面试
一只懒洋洋7 小时前
K-meas 聚类、KNN算法、决策树、随机森林
算法·决策树·聚类