行列式为1的矩阵不一定是正交矩阵。一个矩阵是正交矩阵需要满足两个条件:
- 它的转置等于它的逆,即 R ⊤ = R − 1 \boldsymbol{R}^\top = \boldsymbol{R}^{-1} R⊤=R−1。
- 它的行列式为1或-1,即 det ( R ) = ± 1 \det(\boldsymbol{R}) = \pm 1 det(R)=±1。
如果仅满足第二个条件( det ( R ) = 1 \det(\boldsymbol{R}) = 1 det(R)=1),但不满足第一个条件,那么该矩阵就不是正交矩阵。
反例:
考虑以下2x2矩阵:
A = ( 1 1 0 1 ) \boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} A=(1011)
这个矩阵的行列式为:
det ( A ) = ( 1 ) ( 1 ) − ( 1 ) ( 0 ) = 1 \det(\boldsymbol{A}) = (1)(1) - (1)(0) = 1 det(A)=(1)(1)−(1)(0)=1
但是,(\boldsymbol{A}) 的转置和逆并不相等:
A ⊤ = ( 1 0 1 1 ) \boldsymbol{A}^\top = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} A⊤=(1101)
A − 1 = ( 1 − 1 0 1 ) \boldsymbol{A}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} A−1=(10−11)
显然, A ⊤ ≠ A − 1 \boldsymbol{A}^\top \neq \boldsymbol{A}^{-1} A⊤=A−1,因此 A \boldsymbol{A} A 不是正交矩阵。
这个例子说明了即使一个矩阵的行列式为1,它也不一定是正交矩阵。正交矩阵必须同时满足转置等于逆矩阵的条件。