20240924 行列式为1的矩阵不一定是正交矩阵

行列式为1的矩阵不一定是正交矩阵。一个矩阵是正交矩阵需要满足两个条件:

  1. 它的转置等于它的逆,即 R ⊤ = R − 1 \boldsymbol{R}^\top = \boldsymbol{R}^{-1} R⊤=R−1。
  2. 它的行列式为1或-1,即 det ⁡ ( R ) = ± 1 \det(\boldsymbol{R}) = \pm 1 det(R)=±1。

如果仅满足第二个条件( det ⁡ ( R ) = 1 \det(\boldsymbol{R}) = 1 det(R)=1),但不满足第一个条件,那么该矩阵就不是正交矩阵。

反例:

考虑以下2x2矩阵:

A = ( 1 1 0 1 ) \boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} A=(1011)

这个矩阵的行列式为:

det ⁡ ( A ) = ( 1 ) ( 1 ) − ( 1 ) ( 0 ) = 1 \det(\boldsymbol{A}) = (1)(1) - (1)(0) = 1 det(A)=(1)(1)−(1)(0)=1

但是,(\boldsymbol{A}) 的转置和逆并不相等:

A ⊤ = ( 1 0 1 1 ) \boldsymbol{A}^\top = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} A⊤=(1101)

A − 1 = ( 1 − 1 0 1 ) \boldsymbol{A}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} A−1=(10−11)

显然, A ⊤ ≠ A − 1 \boldsymbol{A}^\top \neq \boldsymbol{A}^{-1} A⊤=A−1,因此 A \boldsymbol{A} A 不是正交矩阵。

这个例子说明了即使一个矩阵的行列式为1,它也不一定是正交矩阵。正交矩阵必须同时满足转置等于逆矩阵的条件。

相关推荐
信奥卷王2 小时前
[GESP202503 五级] 原根判断
java·数据结构·算法
兮山与2 小时前
算法4.0
算法
nju_spy2 小时前
力扣每日一题(二)任务安排问题 + 区间变换问题 + 排列组合数学推式子
算法·leetcode·二分查找·贪心·排列组合·容斥原理·最大堆
初听于你2 小时前
高频面试题解析:算法到数据库全攻略
数据库·算法
翟天保Steven2 小时前
ITK-基于Mattes互信息的二维多模态配准算法
算法
代码对我眨眼睛2 小时前
226. 翻转二叉树 LeetCode 热题 HOT 100
算法·leetcode·职场和发展
黑色的山岗在沉睡3 小时前
LeetCode 494. 目标和
算法·leetcode·职场和发展
haoly19896 小时前
数据结构和算法篇-线性查找优化-移至开头策略
数据结构·算法·移至开头策略
学Linux的语莫10 小时前
机器学习数据处理
java·算法·机器学习
earthzhang202110 小时前
【1007】计算(a+b)×c的值
c语言·开发语言·数据结构·算法·青少年编程