20240924 行列式为1的矩阵不一定是正交矩阵

行列式为1的矩阵不一定是正交矩阵。一个矩阵是正交矩阵需要满足两个条件:

  1. 它的转置等于它的逆,即 R ⊤ = R − 1 \boldsymbol{R}^\top = \boldsymbol{R}^{-1} R⊤=R−1。
  2. 它的行列式为1或-1,即 det ⁡ ( R ) = ± 1 \det(\boldsymbol{R}) = \pm 1 det(R)=±1。

如果仅满足第二个条件( det ⁡ ( R ) = 1 \det(\boldsymbol{R}) = 1 det(R)=1),但不满足第一个条件,那么该矩阵就不是正交矩阵。

反例:

考虑以下2x2矩阵:

A = ( 1 1 0 1 ) \boldsymbol{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} A=(1011)

这个矩阵的行列式为:

det ⁡ ( A ) = ( 1 ) ( 1 ) − ( 1 ) ( 0 ) = 1 \det(\boldsymbol{A}) = (1)(1) - (1)(0) = 1 det(A)=(1)(1)−(1)(0)=1

但是,(\boldsymbol{A}) 的转置和逆并不相等:

A ⊤ = ( 1 0 1 1 ) \boldsymbol{A}^\top = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} A⊤=(1101)

A − 1 = ( 1 − 1 0 1 ) \boldsymbol{A}^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} A−1=(10−11)

显然, A ⊤ ≠ A − 1 \boldsymbol{A}^\top \neq \boldsymbol{A}^{-1} A⊤=A−1,因此 A \boldsymbol{A} A 不是正交矩阵。

这个例子说明了即使一个矩阵的行列式为1,它也不一定是正交矩阵。正交矩阵必须同时满足转置等于逆矩阵的条件。

相关推荐
你撅嘴真丑17 小时前
第九章-数字三角形
算法
uesowys17 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
ValhallaCoder17 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮17 小时前
AI 视觉连载1:像素
算法
智驱力人工智能18 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
孞㐑¥18 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法
月挽清风18 小时前
代码随想录第十五天
数据结构·算法·leetcode
3GPP仿真实验室18 小时前
【MATLAB源码】CORDIC-QR :基于Cordic硬件级矩阵QR分解
开发语言·matlab·矩阵
XX風19 小时前
8.1 PFH&&FPFH
图像处理·算法
NEXT0619 小时前
前端算法:从 O(n²) 到 O(n),列表转树的极致优化
前端·数据结构·算法