目标检测论文常用评价指标(Evaluation Metrics)总结

评价指标(Evaluation Metrics)

      • 混淆矩阵(Confusion Matrix)
      • 归一化混淆矩阵(Normalized Confusion Matrix)
      • 精确度(Precision)
      • 召回率(Recall)
      • F1值(F1-Score)
      • 平均精确度(Average Precision, AP)
      • 平均精确度(Mean Average Precision, mAP)
      • 交并比(Intersection Over Union, IoU)
      • mAP50
      • mAP50-95
      • 检测时间(Detection Time)
      • 每秒帧率(Frames Per Second, FPS)

混淆矩阵(Confusion Matrix)

下面介绍四个概念:

  • 真阳性(True Positive, TP)

    TP:模型预测是行人,预测正确(实际是行人,而且也被模型预测为是行人)

  • 真阴性(True Negative, TN)

    TN:模型预测非行人,预测正确(实际不是行人,而且也被模型预测为非行人)

  • 假阳性(False Positive, FP)

    FP:模型预测是行人,预测错误(实际非行人,但是被模型预测为是行人)

  • 假阴性(False Negative, FN)

    FN:模型预测非行人,预测错误(实际是行人,但是被模型预测为非行人)

混淆矩阵是对检测结果的可视化概览,是一种用于评估和可视化分类模型性能的重要工具。它以表格形式展现,直观地显示了模型预测类别与实际类别之间的对应关系(即TP、TN、FP、FN)。

归一化混淆矩阵(Normalized Confusion Matrix)

混淆矩阵的归一化,就是对混淆矩阵所有数值整体做了归一化处理,即将每个单元格的值除以该类别实际样本数,从而得到表示分类准确率的百分比。这种标准化可以直观地比较类别间的分类准确率,并识别出模型在不同类别上表现的差异。在归一化混淆矩阵中,对角线颜色越深,代表该模型对于此数据集的各类别识别能力越强。

精确度(Precision)

在被分类器预测为正例的样本中有多少是正确的。

召回率(Recall)

在所有实际为正例的样本中有多少被分类器预测为正例。

F1值(F1-Score)

它是精确度和召回率的综合表现,当精确度和召回率出现难以权衡的时候使用。

平均精确度(Average Precision, AP)

用于计算不同类别的平均精确度。

平均精确度(Mean Average Precision, mAP)

多类别问题的平均精确度。

交并比(Intersection Over Union, IoU)

  • 在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。
  • IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。

mAP50

  • 定义:mAP50 是指 IoU 阈值固定为 0.5 时计算得到的平均精度均值。
  • 特点:mAP50 更关注于检测框与真实框之间的重叠程度大于等于 50% 的情况。这意味着即使检测框与真实框的重叠程度较低,只要超过 50%,也会被视为正确检测。

mAP50-95

  • 定义:mAP50-95 是指在 IoU 阈值从 0.5 到 0.95 之间,每隔 0.05 计算一次 AP(Average Precision),然后取这些 AP 的平均值。
  • 特点:mAP50-95 更全面地考虑了不同重叠程度下的检测质量,这要求模型不仅能够检测出目标,还要确保检测框与真实框之间的重叠足够高。

检测时间(Detection Time)

  • 预处理(Preprocess):对输入数据进行初步处理的阶段。
  • 推理(Inference):模型实际运行的阶段,基于预处理后的数据执行前向传播计算。
  • 损失计算(Loss):损失计算主要用于训练阶段,评估模型输出与真实标签之间的差距。
  • 后处理(Postprocess):这是将模型的输出转化为可解释的结果的过程。

每秒帧率(Frames Per Second, FPS)

它用于评估模型在给定硬件上的处理速度,即每秒可以处理的图片数量,该指标对于实现实时检测非常重要,因为只有处理速度快,才能满足实时检测的需求。

相关推荐
weixin_446260852 小时前
LocalAI:一个免费开源的AI替代方案,让创意更自由!
人工智能·开源
CAE3202 小时前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
骄傲的心别枯萎2 小时前
RV1126 NO.37:OPENCV的图像叠加功能
人工智能·opencv·计算机视觉·音视频·视频编解码·rv1126
HyperAI超神经2 小时前
解决蛋白质构象异质性的原子级建模挑战!David Baker团队PLACER框架解析
人工智能·深度学习·ai·ai4s·蛋白质结构
TG:@yunlaoda360 云老大5 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗5 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
心 爱心 爱5 小时前
Shape-Guided Dual-Memory Learning for 3D Anomaly Detection 论文精读
计算机视觉·3d·异常检测·工业异常检测·三维异常检测·多模态工业异常检测·二维异常检测
兴趣使然黄小黄8 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭8 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t8 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite