目录
1.内容介绍
2.部分代码
3.实验结果
4.内容获取
1内容介绍
麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新兴的群体智能优化算法,灵感来源于麻雀的觅食行为及其在面临危险时的预警机制。SSA通过模拟麻雀的这些自然行为来寻找问题的最优解。该算法具有良好的全局搜索能力和较快的收敛速度,但在某些情况下可能会出现早熟收敛的问题,即过早地收敛到局部最优解。
回声状态网络(Echo State Network, ESN)是递归神经网络的一种变体,特别适用于处理时间序列数据。ESN的核心优势在于其训练过程相对简单快速,因为只有输出层的权重需要调整,而内部的"回声状态"层则保持固定。这种结构使得ESN能够高效地学习动态系统的长期依赖关系。然而,ESN的性能高度依赖于超参数的选择,如储备池大小、输入权重比例等,这给实际应用带来了一定挑战。
将SSA应用于ESN超参数优化中,可以通过智能搜索策略自动调整ESN的关键参数,从而提高模型的预测精度和泛化能力。这种方法不仅继承了SSA强大的搜索能力,还解决了ESN对超参数敏感的问题,使其在时间序列预测、模式识别等领域展现出更佳的应用潜力。
2部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
tic
load bwand
%% 导入数据
x=bwand;
r,s\] = size(x); output=x(:,s); input=x(:,1:s-1); %nox %% 划分训练集和测试集 M = size(P_train, 2); N = size(P_test, 2); %% 数据归一化 \[p_train, ps_input\] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input); \[t_train, ps_output\] = mapminmax(T_train, 0, 1); t_test = mapminmax('apply', T_test, ps_output); %% 训练模型 net = esn_train(p_train, t_train, hidden, lr, Init, reg); %% 预测 t_sim1 = esn_sim(net, p_train); t_sim2 = esn_sim(net, p_test ); %% 数据反归一化 T_sim1 = mapminmax('reverse', t_sim1, ps_output); T_sim2 = mapminmax('reverse', t_sim2, ps_output); %% 均方根误差 error1 = sqrt(sum((T_sim1 - T_train).\^2) ./ M); error2 = sqrt(sum((T_sim2 - T_test ).\^2) ./ N); %% 绘图 %% 测试集结果 figure; plotregression(T_test,T_sim2,\['回归图'\]); figure; ploterrhist(T_test-T_sim2,\['误差直方图'\]); %% %% 预测集绘图 figure plot(1:N,T_test,'r-\*',1:N,T_sim2,'b-o','LineWidth',1.5) legend('真实值','SSA-ESN预测值') xlabel('预测样本') ylabel('预测结果') string={'测试集预测结果对比';\['(R\^2 =' num2str(R2) ' RMSE= ' num2str(error2) ' MSE= ' num2str(mse2) ' RPD= ' num2str(RPD2) ')'\]}; title(string) %% 测试集误差图 figure ERROR3=T_test-T_sim2 plot(T_test-T_sim2,'b-\*','LineWidth',1.5) xlabel('测试集样本编号') ylabel('预测误差') title('测试集预测误差') grid on; legend('SSA-ESN预测输出误差') **3实验结果**  **4内容获取** **主页简介欢迎自取,点点关注,非常感谢!** Matlab实现SSA-ESN麻雀优化算法优化回声状态网络模型源码介绍: MATLAB完整源码和数据(MATLAB完整源码+数据)(excel数据可替换), 1.多种变量输入,单个变量输出; 2.MatlabR2018b及以上版本一键运行; 3.具有良好的编程习惯,程序均包含简要注释。