使用 Vertex AI Gemini 模型和 Elasticsearch Playground 快速创建 RAG 应用程序

作者:来自 Elastic Jeff Vestal

在这篇博客中,我们将使用 Elastic 的 Playground 和 Vertex AI API 将 Elasticsearch 连接到 Google 的 Gemini 1.5 聊天模型。将 Gemini 模型添加到 Playground 使 Google Cloud 开发人员能够快速建立 LLM、测试检索、调整分块并使用 Elastic 将 gen AI 搜索应用程序交付到生产环境。

你需要一个启动并运行的 Elasticsearch 集群。我们将在 Elastic Cloud 上使用 serverless 项目。如果你没有帐户,可以注册免费试用

你还需要一个启用了 Vertex AI 的 Google Cloud 帐户。如果你没有 Google Cloud 帐户,可以注册免费试用

配置 Vertex AI

首先,我们将配置一个 Vertex AI 服务帐户,这将允许我们安全地从 Elasticsearch 向 Gemini 模型进行 API 调用。你可以按照此处 Google Cloud 文档页面上的详细说明进行操作,但我们将介绍要点。

转到 Google Cloud 控制台的 " Create Service Account" 部分。在那里,选择已启用 Vertex AI 的项目。

接下来,为你的服务帐户命名,并可选地提供描述。点击 "Create and Continue"。

为你的项目设置访问控制。对于本博客,我们使用了 "Vertex AI User" 角色,但你需要确保你的访问控制适合你的项目和帐户。

单击 "Done"。

Google Cloud 中的最终设置是为服务帐户创建 API 密钥并以 JSON 格式下载。

单击服务帐户中的 "KEYS ",然后单击 "ADD KEY " 和 "Create New"。

确保选择 "json " 作为密钥类型,然后单击 "CREATE"。

密钥将被创建并自动下载到你的计算机。我们将在下一节中需要此密钥。

从 Playground 连接到你的 LLM

配置 Google Cloud 后,我们可以继续在 Elastic 的 Playground 中配置 Gemini LLM 连接。

本博客假设你已经在 Elasticsearch 中拥有要与 Playground 一起使用的数据。如果没有,请按照搜索实验室博客 Playground:在几分钟内使用 Elasticsearch 试验 RAG 应用程序以开始使用

在 Kibana 中,从侧面导航菜单中选择 Playground。在 Serverless 中,它位于 "Build " 标题下。首次打开时,你可以选择 "Connect to an LLM"。

选择 "Google Gemini"

填写表格以完成配置。

打开上一节创建并下载的 JSON 凭证文件,复制完整的 JSON,并将其粘贴到 "Credentials JSON " 部分。然后点击 "Save"

现在是 Playground 时间!

Elastic 的 Playground 允许你在集成到完整代码之前尝试 RAG 上下文设置和系统提示。

通过在与模型聊天时更改设置,你可以看到哪些设置将为你的应用程序提供最佳响应。

此外,配置搜索 Elasticsearch 数据中的哪些字段以将上下文添加到你的聊天完成请求中。添加上下文将有助于巩固模型并提供更准确的响应。

此步骤使用 Elastic 的 ELSER 稀疏嵌入模型(内置),通过语义搜索检索上下文,并将其传递给 Gemini 模型。

就这些(目前)

对话式搜索是一个令人兴奋的领域,开发人员正在使用强大的大型语言模型(例如 Google Vertex AI 提供的模型)来构建新的体验。Playground 简化了原型设计和调整过程,使你能够更快地交付应用程序。

探索更多使用 Elasticsearch 和 Google Vertex AI 构建的想法,祝你搜索愉快!

准备好自己尝试一下了吗?开始免费试用

想要获得 Elastic 认证吗?了解下一期 Elasticsearch 工程师培训何时开始!

原文:Quickly iterate chat apps on Elasticsearch playground with Google Cloud Gemini models --- Search Labs

相关推荐
Luis Li 的猫猫2 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
木觞清4 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
wyg_0311137 小时前
用deepseek学大模型04-模型可视化与数据可视化
人工智能·机器学习·信息可视化
陈敬雷-充电了么-CEO兼CTO8 小时前
DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型
人工智能·神经网络·自然语言处理·chatgpt·大模型·aigc·deepseek
南风过闲庭9 小时前
人工智能泡沫效应
大数据·人工智能·科技·搜索引擎·百度·ai
我是一个对称矩阵9 小时前
YOLOv5-Seg 深度解析:与 YOLOv5 检测模型的区别
人工智能·yolo·目标跟踪
AomanHao9 小时前
图像质量评价指标-UCIQE-UIQM
图像处理·人工智能·计算机视觉·评价指标
MYT_flyflyfly9 小时前
计算机视觉-尺度不变区域
人工智能·计算机视觉
何小Ai同学9 小时前
Deepseek赚钱密码:小场景闭环如何让你快速盈利?
人工智能·架构·deepseek
AI服务老曹9 小时前
通过感知、分析、预测、控制,最大限度发挥效率的智慧油站开源了
人工智能·开源·自动化·音视频