Matlab实现野马优化算法优化回声状态网络模型 (WHO-ESN)(附源码)

目录

1.内容介绍

2部分代码

3.实验结果

4.内容获取

1内容介绍

野马优化算法(Wild Horse Optimizer, WHO)是一种新型的群体智能优化算法,灵感来源于野马群的迁徙和社会行为。WHO通过模拟野马在寻找食物和水源过程中的探索与聚集行为,以及面对威胁时的逃避机制,来实现对优化问题的求解。该算法具备良好的全局搜索能力,能有效避免早熟收敛,同时具有较少的控制参数,易于实现。然而,WHO也可能在处理特定类型的优化问题时遇到收敛速度较慢的情况。

回声状态网络(Echo State Network, ESN)是一种高效的递归神经网络模型,特别擅长处理时间序列数据。ESN的特点在于其内部状态(储备池)无需训练,仅需调整输出层的权重,这极大地简化了模型的训练过程。ESN能够很好地捕捉数据的动态特性,但其性能很大程度上取决于超参数的选择,如储备池的大小、输入和反馈权重的比例等,不恰当的设置会影响模型的稳定性和准确性。

通过采用WHO优化ESN的超参数,可以充分利用WHO的高效搜索能力,为ESN提供一组最优或接近最优的超参数配置。这一方法不仅有助于提升ESN在时间序列预测、信号处理等任务上的表现,还拓宽了WHO在解决实际问题中的应用场景,例如环境监测、能源管理等领域。这种结合方式体现了群体智能算法与机器学习技术相结合的优势,为解决复杂优化问题提供了新的思路。

2部分代码

%% 清空环境变量

warning off % 关闭报警信息

close all % 关闭开启的图窗

clear % 清空变量

clc % 清空命令行

tic

load bwand

%% 导入数据

x=bwand;

r,s\] = size(x); output=x(:,s); input=x(:,1:s-1); %nox %% 划分训练集和测试集 M = size(P_train, 2); N = size(P_test, 2); %% 数据归一化 \[p_train, ps_input\] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input); \[t_train, ps_output\] = mapminmax(T_train, 0, 1); t_test = mapminmax('apply', T_test, ps_output); %% 获取最优参数 hidden = WBest_pos(1); % 储备池规模 lr = WBest_pos(2); % 学习率(更新速度) reg = WBest_pos(3); % 正则化系数 %% 训练模型 net = esn_train(p_train, t_train, hidden, lr, Init, reg); %% 预测 t_sim1 = esn_sim(net, p_train); t_sim2 = esn_sim(net, p_test ); %% 数据反归一化 T_sim1 = mapminmax('reverse', t_sim1, ps_output); T_sim2 = mapminmax('reverse', t_sim2, ps_output); %% 均方根误差 error1 = sqrt(sum((T_sim1 - T_train).\^2) ./ M); error2 = sqrt(sum((T_sim2 - T_test ).\^2) ./ N); %% 绘图 %% 测试集结果 figure; plotregression(T_test,T_sim2,\['回归图'\]); figure; ploterrhist(T_test-T_sim2,\['误差直方图'\]); %% 预测集绘图 figure plot(1:N,T_test,'r-\*',1:N,T_sim2,'b-+','LineWidth',0.5) legend('真实值','WHO-ESN预测值') xlabel('预测样本') ylabel('预测结果') string={'测试集预测结果对比';\['(R\^2 =' num2str(R2) ' RMSE= ' num2str(error2) ' MSE= ' num2str(mse2) ' RPD= ' num2str(RPD2) ')'\]}; title(string) %% 测试集误差图 figure ERROR3=T_test-T_sim2 plot(T_test-T_sim2,'b-\*','LineWidth',0.5) xlabel('测试集样本编号') ylabel('预测误差') title('测试集预测误差') grid on; legend('WHO-ESN预测输出误差') **3实验结果** ![](https://i-blog.csdnimg.cn/direct/9074f5d72de14159bf758a66d7fc28ce.jpeg)![](https://i-blog.csdnimg.cn/direct/5209b3e035284c7fb7603b4376204fda.jpeg)![](https://i-blog.csdnimg.cn/direct/949aa00ca6e54bd99ebb216b0562d4ba.jpeg)![](https://i-blog.csdnimg.cn/direct/56360f18860a4eeda1df2cf11c5643cd.jpeg) **4内容获取** **主页简介欢迎自取,点点关注,非常感谢!** Matlab实现WHO-ESN野马优化算法优化回声状态网络模型源码介绍: MATLAB完整源码和数据(MATLAB完整源码+数据)(excel数据可替换), 1.多种变量输入,单个变量输出; 2.MatlabR2018b及以上版本一键运行; 3.具有良好的编程习惯,程序均包含简要注释。

相关推荐
天上路人11 分钟前
AI神经网络降噪算法在语音通话产品中的应用优势与前景分析
深度学习·神经网络·算法·硬件架构·音视频·实时音视频
羽星_s12 分钟前
文本分类任务Qwen3-0.6B与Bert:实验见解
人工智能·bert·文本分类·ai大模型·qwen3
摸鱼仙人~14 分钟前
TensorFlow/Keras实现知识蒸馏案例
人工智能·tensorflow·keras
好吃的肘子15 分钟前
MongoDB 应用实战
大数据·开发语言·数据库·算法·mongodb·全文检索
浊酒南街18 分钟前
TensorFlow之微分求导
人工智能·python·tensorflow
羽凌寒23 分钟前
曝光融合(Exposure Fusion)
图像处理·人工智能·计算机视觉
汉克老师30 分钟前
GESP2025年3月认证C++二级( 第三部分编程题(1)等差矩阵)
c++·算法·矩阵·gesp二级·gesp2级
lucky_lyovo31 分钟前
机器学习-特征工程
人工智能·机器学习
alpszero36 分钟前
YOLO11解决方案之对象裁剪探索
人工智能·python·计算机视觉·yolo11
sz66cm40 分钟前
算法基础 -- 小根堆构建的两种方式:上浮法与下沉法
数据结构·算法