集合论(ZFC)之良创关系(Well-Founded Relation)

定义在集合S中的一个二元关系(Binary Relation)记,<,有(S,<)。如果对于集合S的任意非空子集,都存在关系(<)下的最小元素,那么该关系(<)成为良创关系(Well_Founded Relation),集合S与关系(<),即(S,<),称为良创集。亦:

(s ⊂ S ∧ s ≠ ∅ → (a ∈ s → ¬(∃x∈s.(x < a)))) → Well_Founded(S)

可证,良序集(Well-Ordered Set)满足良创集的条件。即良序集为良创集。

另外,给定义一个良创集(S,<),可定义关系(<)的高度(height),同时,赋予集合S中的每个元素 x 一个序数,称该序数为对应元素 x 的关系(<)层级 ( Rank of x in < )。

那么,把这赋级规则看作是一函数 rank: S → Ordinal,其定义为

rank(x) = sup { rank(y) + 1: y < x } ( x ∈ S )

该函数 rank 是唯一存在的。其证明可通过对层级进行归纳,定义各层级集合,如

S₀ = ∅ ;

Sₙ₊₁ = {s ∈ S: ∀t(t < s → t ∈ Sₙ)};

Sₐ = ⋃ ᵢ<ₐ Sᵢ ( a 是极限序数(limit ordinal))

那么,有 S₀ ⊂ S₁ ⊂ ... ⊂ S。

令,r 为该集合的最高层级,有 Sᵣ = S。

如果 Sᵣ **≠**S,那么,(S - Sᵣ)⊂ S,而S为良创集,由此存在一个元素 a 是(S - Sᵣ)中,关系(<)下的最小元素,那么根据上述描述,a 存在于 Sᵣ₊₁ 中,与定义不符,因此,Sᵣ = S。

其中 r 为 良创集(S,<)的高度。

相关推荐
Tisfy4 分钟前
LeetCode 3637.三段式数组 I:一次遍历(三种实现)
算法·leetcode·题解·模拟·数组·遍历·moines
菩提树下的凡夫6 分钟前
Python 环境管理工具
开发语言·python
遨游xyz11 分钟前
数据结构-哈希表
算法·哈希算法
索荣荣21 分钟前
JavaToken实战指南:从原理到应用
开发语言·python
zho_uzhou27 分钟前
c++ imgui implot绘图使用示例 visual studio
开发语言·c++·visual studio
dyyx11128 分钟前
C++中的过滤器模式
开发语言·c++·算法
星夜泊客43 分钟前
C# 基础:为什么类可以在静态方法中创建自己的实例?
开发语言·经验分享·笔记·unity·c#·游戏引擎
CappuccinoRose1 小时前
React框架学习文档(七)
开发语言·前端·javascript·react.js·前端框架·reactjs·react router
lrh1228001 小时前
详解决策树算法:分类任务核心原理、形成流程与剪枝优化
算法·决策树·机器学习
期末考复习中,蓝桥杯都没时间学了1 小时前
力扣刷题15
算法·leetcode·职场和发展