DA-CNN-LSTM多输入回归|蜻蜓算法-卷积-长短期神经网络|Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab 平台编译,将DA (蜻蜓优化算法 )与CNN- LSTM卷积-长短期记忆神经网络 )结合,进行多输入数据回归预测

  • 输入训练的数据包含7 个特征1 个响应值 ,即通过7个输入值预测1个输出值**(多变量回归预测,个数可自行指定)**

  • 通过DA算法优化CNN-LSTM网络的学习率、卷积核个数、神经元个数

  • 自动归一化处理,训练CNN-LSTM网络,实现更加精准的预测

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

二、实际运行效果:

三、算法介绍:

蜻蜓寻优算法(Dragonfly Algorithm)是一种基于仿生学原理的启发式优化算法,其灵感来自蜻蜓在寻找食物时的行为。该算法最初由Xin-She Yang在2010年提出。

蜻蜓寻优算法的基本思想是通过模拟蜻蜓的觅食行为+来搜索最优解。算法通过维护三个种群:主种群(leader),次种群(follower),和随机种群(random)。主种群负责在搜索空间中寻找全局最优解,次种群负责在局部空间中进行搜索,而随机种群则用于增加搜索的多样性。算法的执行过程如下:

1.初始化种群:根据问题的搜索空间,初始化主种群、次种群和随机种群的个体位置。

2.更新位置:根据一定的规则,更新主+种群和次种群的个体位置,使其向更优的解靠近。

3.交互和迁移:根据预定义的规则,主种群和次种群之间进行交互和迁移,以促进信息的共享和全局搜索。

4.随机搜索:随机种群中的个体以随机方式在搜索空间中移动,增加搜索的随机性和多样性。

5.重复执行:重复执行步骤2至步聚4,直到达到预定的停止条件(如达到最大迭代次数或找到满意的解)。

蜻蜓寻优算法的优点包括较好的全局搜索能力和快速的收敛速度+。它适用于解决各种优化问题,尤其在连续优化问题和大规模优化问题上表现出色。使用时,需要根据具体问题的需求进行参数调优和适当的问题建模,以获得最佳的优化结果。

四、完整程序下载:

相关推荐
西柚小萌新14 分钟前
【深度学习:进阶篇】--4.3.seq2seq与Attention机制
人工智能·深度学习
求索小沈15 分钟前
ubuntu22.04 安装cuda cudnn
人工智能·深度学习
FF-Studio1 小时前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
梦子要转行1 小时前
matlab/Simulink-全套50个汽车性能建模与仿真源码模型9
开发语言·matlab·汽车
CoovallyAIHub2 小时前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
机器学习之心3 小时前
经典灰狼算法+编码器+双向长短期记忆神经网络,GWO-Transformer-BiLSTM多变量回归预测,作者:机器学习之心!
神经网络·bilstm·gwo-transformer
Zevalin爱灰灰4 小时前
MATLAB GUI界面设计 第六章——常用库中的其它组件
开发语言·ui·matlab
网安INF6 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
CoovallyAIHub7 小时前
RTMPose:重新定义多人姿态估计的“实时”标准!
深度学习·算法·计算机视觉
weisian1517 小时前
人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
人工智能·神经网络·cnn