损失函数pytorch

一、L1Loss(绝对值误差损失)、MSELoss(平方误差损失):用于回归问题

参数reduction:

  • 'mean'(默认):返回损失的平均值(相当于 size_average=True)。
  • 'sum':返回损失的总和(相当于 reduce=False)。
python 复制代码
import torch
from torch.nn import L1Loss, MSELoss

input=torch.tensor([1,2,3],dtype=float)
target=torch.tensor([1,2,5],dtype=float)

loss=L1Loss(reduction='sum') #L1Loss: 绝对值误差损失,返回损失的总和
result=loss(input,target)
print(result) #tensor(2., dtype=torch.float64)

lose_mse=MSELoss() #MSELoss: 平方误差损失,不设置则默认返回损失的平均值
result_mse=lose_mse(input,target)
print(result_mse) #tensor(1.3333, dtype=torch.float64)

二、交叉熵损失:用于分类问题

1、如何计算:

2、如何使用:

python 复制代码
#交叉熵:常用于分类问题的损失函数
import torch
from torch import nn

x=torch.tensor([[0.1,0.2,0.3]]) #torch.Size([3])
y=torch.tensor([1])
#如果x是x=torch.tensor([0.1,0.2,0.3])的话,要写x=torch.reshape(x,(1,3)) #torch.Size([1, 3])
#对应的关系:
#x=[ 有三个样本时
#    []
#    []
#    []
#  ]
#y=[a1,a2,a3]

loss=nn.CrossEntropyLoss()
result_cross=loss(x,y)
print(result_cross)
复制代码

3、举例:CIFAR10的分类损失

每次抓取一张图片:

img------>模型------>output(十个分类的得分)

cross_entropy_loss(output,target)

python 复制代码
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

#以CIFAR10的分类检测为例,计算模型的loss

test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(test_set,batch_size=1)

class Xigua(nn.Module):
    def __init__(self):
        super().__init__()
        self.model1=Sequential(
        Conv2d(3,32,5,padding=2),
        MaxPool2d(2),
        Conv2d(32,32,5,padding=2),
        MaxPool2d(2),
        Conv2d(32,64,5,padding=2),
        MaxPool2d(2),
        Flatten(),
        Linear(1024,64),
        Linear(64,10),
        )

    def forward(self,x):
        x=self.model1(x)
        return x

xigua1=Xigua()
loss=nn.CrossEntropyLoss()
step=0
for data in dataloader:
    imgs,targets=data
    outputs=xigua1(imgs)
    #看下outputs和targets长什么样,进而选择什么样的损失函数
    print(outputs)
    print(targets)
    result_loss=loss(outputs,targets)
    print(result_loss)
    step+=1
    if step>=1:
        break
相关推荐
老胖闲聊43 分钟前
Python Rio 【图像处理】库简介
开发语言·图像处理·python
码界奇点1 小时前
Python Flask文件处理与异常处理实战指南
开发语言·python·自然语言处理·flask·python3.11
浠寒AI1 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154462 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me072 小时前
深度学习模块缝合
人工智能·深度学习
YuTaoShao2 小时前
【论文阅读】YOLOv8在单目下视多车目标检测中的应用
人工智能·yolo·目标检测
行云流水剑2 小时前
【学习记录】如何使用 Python 提取 PDF 文件中的内容
python·学习·pdf
算家计算2 小时前
字节开源代码模型——Seed-Coder 本地部署教程,模型自驱动数据筛选,让每行代码都精准落位!
人工智能·开源
伪_装2 小时前
大语言模型(LLM)面试问题集
人工智能·语言模型·自然语言处理
gs801403 小时前
Tavily 技术详解:为大模型提供实时搜索增强的利器
人工智能·rag