ChatGPT丨R语言在生态环境数据统计分析、绘图、模型中的应用

第一单元:生态环境数据统计概述

1.1 生态环境数据特点及统计方法介绍

1.生态环境数据复杂性和多样性

2.生态环境数据类型及分布特点

3.生态环境数据主要统计分析方法及统计检验(t-检验、F检验、卡方检验)

4.如何根据数据类型、特点及结构选择合适的统计方法

1.2 GPT大语言模型简介

1.GPT大语言模型简介:定义、架构及发展历程

2.GPT大语言模型使用入门

3.GPT大语言模型提示词(prompt)

1)提示词基本语法及应用

2)提高大语言模型回答质量策略

4.让GPT成为科研助手:文献综述;实验设计;数据分析。。。。

5.GPT与R语言结合开展数据分析优势

1.3 GPT&R:R语言入门

1.GPT辅助安装与配置R和RStudio

2.GPT辅助学习R语言程序包和函数用途和用法

3.GPT辅助学习R中变量、数据类型、函数等

4.GPT辅助开展R语言数据基本操作

1.4 GPT&R:生态环境数据准备及绘图基础

1.生态环境数据类型及常见数据资源

2.GPT辅助生态环境数据整理及清洗

3.GPT辅助生态环境数据探索

4.GPT辅助ggplot2绘图

  1. 基础绘图类型:散点图、箱线图、频率图、提琴图、峰峦图、相关图等

  2. 高级绘图技巧: 多图组合、排版及生成高质量图(论文发表)

第二单元:GPT&R:回归与混合效应模型

2.1 一般和广义线性回归模型(lm&glm)

1.一般线性模型和广义线性模型介绍:基本原理、假设条件及应用情景等

2.GPT辅助一般线性模型(lm)R语言实现

1)回归模型

2)方差分析

3)协方差分析

4)模型诊断

5)模型选择(逐步回归)

3.GPT辅助广义线性模型(glm)R语言实现

  1. 广义回归模型、链接函数、分布族、模型比较

  2. 逻辑斯蒂回归(0,1数据)

  3. 泊松回归(计数数据):泊松、负二项分布、零膨胀、零截断

2.2 线性和广义线性混合效应模型(lmm&glmm)

1.混合效应模型简介:嵌套数据、固定效应、随机效应等基本概念

2.GPT辅助线性混合效应模型(lmm)

1)模型构建:模型类型确定(随机截距/随机截距)、模型比较和诊断

2)模型结果解读、描述及作图

3.GPT辅助广义线性混合效应模型(glmm)

1)根据数据特征选择合适的广义线性混合模型误差分布及程序包

  1. 二项分布(0,1)混合效应模型:数据检查、模型构建、结果展示

3)计数数据混合效应模型:泊松、过度离散、零膨胀及零截断

4.GPT辅助混合效应模型的模型选择(模型average)

2.3相关数据分析:空间、时间及系统发育相关

1.回归模型数据自相关问题及简介

2.GPT辅助空间自相关数据分析案例:模型构建、模型比较、模型诊断等

3.GPT辅助时间自相关数据分析案例:模型构建、模型比较、模型诊断等

4.GPT辅助系统发育相关数据分析案例:模型构建、模型比较、模型诊断等

第三单元:GPT & R:多元统计分析

3.1 多元统计中的排序分析

1.多元统计分析技术在生态环境数据分析应用简介

2.GPT辅助多元统计中的排序分析

1)非约束排序(PCA、PCoA、NMDS)分析:模型选择、结果解读及绘图

2)约束排序(RDA、db-RDA)分析:数据筛选、变量选择、结果解读及绘图

3.2多元统计中的聚类分析及分组差异检验

1.GPT辅助多元统计中的聚类分析

1)层次聚类(hclust):数据检查、聚类聚类质量评估、结果解读及绘图

2)非层次聚类(kmeans):数据检查、聚类聚类质量评估、结果解读及绘图

2.GPT辅助多元统计中的分组差异检验

1)非参数多元方差分析(PERMANOVA)分析

2)非参数多元方差分析(PERMANOVA)与非约束排序(PCoA)结合

3.3多元统计中机器学习:随机森林(Random Forest,RF)模型

1.随机森林模型简介

2.GPT辅助随机森林模型分类案例:模型构建、交叉验证、变量重要性评估等

3.GPT辅助随机森林模型回归案例:模型构建、交叉验证、变量重要性评估等

第四单元:GPT&R:结构方程模型(SEM)(lavaan)

1.结构方程模型(SEM)基本原理

2.GPT辅助结构方程模型(lavaan)分析

  1. 初始模型构建

  2. 模型调整

  3. 模型评估及结果表达

3.GPT辅助潜变量(latent)分析

4.GPT辅助复合变量(composite)分析

第五单元:GPT&R:其他统计模型或方法

5.1 GPT辅助非线性数据分析

1.非线性数据分析简介:广义可加模型 VS 非线性模型

2.广义可加模型(GAM)案例:模型构建、模型诊断、结果绘图等

3.非线性模型(NLM)案例:模型构建、参数设置等

5.2 GPT辅助Meta分析(Meta-analysis)

1.Meta分析基本原理

2.Meta分析效应值选则与计算

3.Meta分析效应值(累积/平均):随机效应模型、固定效应模型、森林图等

4.Meta分析解释变量引入(分类/连续变量)及结果绘图

5.Meta分析模型诊断:发表偏爱性、失安全系数等

5.3 GPT辅助贝叶斯回归与混合模型

1.贝叶斯回归和混合效应模型简介

2.贝叶斯回归模型案例:模型构建、模型诊断及结果绘图

3.贝叶斯混合效应模型案例:模型构建、模型诊断及结果绘图

原文链接

相关推荐
洪大宇11 分钟前
Vuestic 整理使用
开发语言·javascript·ecmascript
jonyleek12 分钟前
数据可视化:JVS-BI仪表盘图表样式配置全攻略,打造个性化数据展示!
java·大数据·信息可视化·数据挖掘·数据分析·自动化·软件需求
WangMing_X13 分钟前
C# 单个函数实现各进制数间转换
java·开发语言·算法·c#·winform·软件
图扑软件17 分钟前
掌控物体运动艺术:图扑 Easing 函数实践应用
大数据·前端·javascript·人工智能·信息可视化·智慧城市·可视化
墨染新瑞23 分钟前
C语言——八股文(笔试面试题)
c语言·开发语言
newxtc29 分钟前
【商汤科技-注册/登录安全分析报告】
人工智能·科技·安全·web安全·机器学习·行为验证
TechubNews35 分钟前
Vitalik 新文丨以太坊可能的未来:The Splurge
大数据·人工智能·机器学习·web3·区块链
hai4058738 分钟前
卷积、卷积操作、卷积神经网络原理探索
人工智能·神经网络·cnn
好青崧40 分钟前
JavaScript 循环与条件判断
开发语言·javascript·udp
进步哥43 分钟前
python之爬虫遇到返回内容乱码
开发语言·爬虫·python