Pytorch学习--神经网络基本骨架--nn.Module的使用

一、头文件

torch.nn.Module

二、简单示例

python 复制代码
import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))
  • 类定义与构造函数:
    • class Model(nn.Module): 声明一个名为Model的类,继承自torch.nn.Module。
    • init(self) -> None: 定义了构造函数__init__,用于初始化网络结构。
    • super().init() 调用父类的构造函数,确保nn.Module中的初始化逻辑被正确执行。
    • self.conv1 = nn.Conv2d(1, 20, 5) 创建了第一个卷积层。
    • self.conv2 = nn.Conv2d(20, 20, 5) 创建第二个卷积层
  • 前向传播 forward:
    • def forward(self, x): 定义了前向传播函数,用于定义输入数据如何经过模型的每一层得到最终输出。
    • x = F.relu(self.conv1(x)) 将输入x通过第一个卷积层conv1,然后将结果通过ReLU激活函数。ReLU激活函数用于引入非线性,以增强模型的表达能力。
    • return F.relu(self.conv2(x)) 继续将数据传递给第二个卷积层conv2,并再次应用ReLU激活函数。

三、自己写代码尝试一下

python 复制代码
import torch
from torch import  nn
class Mary(nn.Module):
    def __init__(self):
        super().__init__()
    def forward(self,input):
        output=input+1
        return output
tensor_Yorelee=torch.tensor(10)
Yorelee=Mary()
Yorelee_output=Yorelee(tensor_Yorelee)
print(Yorelee_output)

输出:

python 复制代码
tensor(11)

提示:善于运用debug,可以显示出每一步到了哪里,且变量值是什么

四、__call__和forward的比较

学到这里,我会想之前学到的__call__和forward函数有什么区别呢?

  • model(x) 等价于调用 call 方法,而 call 会调用 forward 并处理一些额外逻辑。
  • 如果只调用 forward,会省略 call 中的附加功能,因此一般建议使用 model(x) 语法,以便自动调用 call 和 forward。
python 复制代码
model = Model()  # 创建模型实例

# 直接调用 `__call__`,实际上是调用了 `forward` 并包含了额外的处理
output = model(x)

# 直接调用 `forward`,不会包含 `__call__` 中的额外处理
output = model.forward(x)

参考视频

相关推荐
AIGC_北苏2 分钟前
V3 Admin Vite 5.0 开源项目剖析【一】
学习
码农进厂打螺丝4 分钟前
Stable Diffusion 3.5 FP8:量化优化与部署实践
人工智能·计算机视觉·stable diffusion
Niuguangshuo8 分钟前
DeepDream:窥视神经网络内部世界的梦幻之窗
人工智能·深度学习·神经网络
山沐与山9 分钟前
【设计模式】Python责任链模式:从入门到实战
python·设计模式·责任链模式
美狐美颜SDK开放平台11 分钟前
实时直播场景下,美颜sdk美型功能开发的技术难点与解决思路
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
luoluoal12 分钟前
基于python的图像的信息隐藏技术研究(源码+文档)
python·mysql·django·毕业设计·源码
不爱学英文的码字机器17 分钟前
基于昇腾 NPU 部署 Llama-3-8B 实战教程:从环境搭建到构建昇腾问答智能体
人工智能·pytorch·llama
小程故事多_8018 分钟前
LangGraph破局指南,打造具备长期记忆与人工可控的高阶AI智能体
人工智能
week_泽20 分钟前
1、OpenCV 特征检测入门笔记
人工智能·笔记·opencv