How to verify your CUDA and pytorch

1.Test CUDA

This script will attempt to create a tensor on the GPU and perform a simple computation.

python 复制代码
import torch

def test_cuda():
    # Check CUDA availability
    if torch.cuda.is_available():
        print("CUDA is available on this device.")
        # Set device to CUDA
        device = torch.device("cuda")
        # Create a tensor and move it to CUDA
        x = torch.rand(10, 10).to(device)
        print("Successfully created a tensor on CUDA:", x)
        # Perform a simple computation
        y = x * x
        print("Output of the computation:", y)
    else:
        print("CUDA is not available. Check your installation and driver.")

if __name__ == "__main__":
    test_cuda()

Run the script: Use a terminal or command prompt to run the script with Python.

bash 复制代码
python test_cuda.py

The script should print whether CUDA is available, show the tensor created on the GPU, and display the output of a simple multiplication operation. If there are any errors during these steps, they will help pinpoint what might be wrong with your CUDA setup.

2.Check PyTorch Compatibility

python 复制代码
# test_torch.py
import torch
print(torch.__version__)
print(torch.cuda.is_available())

Run the script: Use a terminal or command prompt to run the script with Python.

bash 复制代码
python test_torch.py

If torch.cuda.is_available() returns True, then PyTorch is able to use CUDA.

相关推荐
老艾的AI世界7 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221517 小时前
机器学习系列----关联分析
人工智能·机器学习
FreedomLeo18 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas
风间琉璃""8 小时前
二进制与网络安全的关系
安全·机器学习·网络安全·逆向·二进制
Java Fans9 小时前
梯度提升树(Gradient Boosting Trees)详解
机器学习·集成学习·boosting
谢眠10 小时前
机器学习day6-线性代数2-梯度下降
人工智能·机器学习
sp_fyf_202410 小时前
【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
CoderIsArt10 小时前
基于 BP 神经网络整定的 PID 控制
人工智能·深度学习·神经网络
z千鑫11 小时前
【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南
人工智能·pytorch·深度学习·aigc·tensorflow·keras·codemoss
EterNity_TiMe_11 小时前
【论文复现】神经网络的公式推导与代码实现
人工智能·python·深度学习·神经网络·数据分析·特征分析