1.Test CUDA
This script will attempt to create a tensor on the GPU and perform a simple computation.
python
import torch
def test_cuda():
# Check CUDA availability
if torch.cuda.is_available():
print("CUDA is available on this device.")
# Set device to CUDA
device = torch.device("cuda")
# Create a tensor and move it to CUDA
x = torch.rand(10, 10).to(device)
print("Successfully created a tensor on CUDA:", x)
# Perform a simple computation
y = x * x
print("Output of the computation:", y)
else:
print("CUDA is not available. Check your installation and driver.")
if __name__ == "__main__":
test_cuda()
Run the script: Use a terminal or command prompt to run the script with Python.
bash
python test_cuda.py
The script should print whether CUDA is available, show the tensor created on the GPU, and display the output of a simple multiplication operation. If there are any errors during these steps, they will help pinpoint what might be wrong with your CUDA setup.
2.Check PyTorch Compatibility
python
# test_torch.py
import torch
print(torch.__version__)
print(torch.cuda.is_available())
Run the script: Use a terminal or command prompt to run the script with Python.
bash
python test_torch.py
If torch.cuda.is_available()
returns True
, then PyTorch is able to use CUDA.