【机器学习】23. 聚类-GMM: Gaussian Mixture Model

1. 定义和假设

定义:probabilistic clustering(model-base)

假设:数据服从正态分布

2. 算法内容

我们假设数据是由k个高斯(正态)分布混合生成的。每个分布有2个参数:μ和σ。

一个分布对应一个集群

从u和o的随机初始值开始

在每次估计后,我们计算每个例子属于每个分布(簇)的概率

利用概率,我们重新计算参数,直到它们不变。

案例

假设有20000个数据点,两个高斯分布,两个标准差都是2,使用GMM聚类。

  1. 初始化均值方差。标准差限定了,初始均值即可。随机初始化均值分别为-2和3
  2. 根据贝叶斯计算概率

    0.5 是每个分布的权重
  3. 更新均值

    新的均值是基于数据点的加权平均值计算的. 权重由每个数据点属于特定分布的概率决定
  4. 迭代和收敛, 重复步骤2和步骤3, 直到μ不再产生变化或变化非常小, 数据点最终分配给概率更高的分布

3. 和K-Means对比

k-means: crisp(hard)-assignment

GMM -- probabilistic(soft assignment)

GMM可以看作是k均值的泛化

GMM更灵活。允许椭圆的cluster而不是圆形

相关推荐
LDG_AGI37 分钟前
【推荐系统】深度学习训练框架(八):PyTorch分布式采样器DistributedSampler原理详解
人工智能·pytorch·分布式·深度学习·算法·机器学习·推荐算法
智能化咨询38 分钟前
(66页PPT)某著名企业XX集团数据分析平台建设项目方案设计(附下载方式)
大数据·人工智能·数据分析
serve the people3 小时前
TensorFlow 图执行(tf.function)的 “非严格执行(Non-strict Execution)” 特性
人工智能·python·tensorflow
Nebula_g3 小时前
C语言应用实例:背包DP1(Bone Collector、Piggy-Bank、珍惜现在,感恩生活)
算法
泰迪智能科技3 小时前
图书推荐分享 | 堪称教材天花板,深度学习教材-TensorFlow 2 深度学习实战(第2版)(微课版)
人工智能·深度学习·tensorflow
roman_日积跬步-终至千里3 小时前
【模式识别与机器学习(5)】主要算法与技术(中篇:概率统计与回归方法)之逻辑回归(Logistic Regression)
算法·机器学习·回归
吴佳浩5 小时前
LangChain 深入
人工智能·python·langchain
LplLpl118 小时前
AI 算法竞赛通关指南:基于深度学习的图像分类模型优化实战
大数据·人工智能·机器学习
Promise4858 小时前
贝尔曼公式的迭代求解笔记
笔记·算法
依米s8 小时前
各年度人工智能大会WAIC核心议题(持续更新)
人工智能·人工智能+·waic·人工智能大会+