【机器学习】23. 聚类-GMM: Gaussian Mixture Model

1. 定义和假设

定义:probabilistic clustering(model-base)

假设:数据服从正态分布

2. 算法内容

我们假设数据是由k个高斯(正态)分布混合生成的。每个分布有2个参数:μ和σ。

一个分布对应一个集群

从u和o的随机初始值开始

在每次估计后,我们计算每个例子属于每个分布(簇)的概率

利用概率,我们重新计算参数,直到它们不变。

案例

假设有20000个数据点,两个高斯分布,两个标准差都是2,使用GMM聚类。

  1. 初始化均值方差。标准差限定了,初始均值即可。随机初始化均值分别为-2和3
  2. 根据贝叶斯计算概率

    0.5 是每个分布的权重
  3. 更新均值

    新的均值是基于数据点的加权平均值计算的. 权重由每个数据点属于特定分布的概率决定
  4. 迭代和收敛, 重复步骤2和步骤3, 直到μ不再产生变化或变化非常小, 数据点最终分配给概率更高的分布

3. 和K-Means对比

k-means: crisp(hard)-assignment

GMM -- probabilistic(soft assignment)

GMM可以看作是k均值的泛化

GMM更灵活。允许椭圆的cluster而不是圆形

相关推荐
C语言魔术师1 分钟前
【小游戏篇】三子棋游戏
前端·算法·游戏
自由自在的小Bird1 分钟前
简单排序算法
数据结构·算法·排序算法
无须logic ᭄1 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
一水鉴天1 小时前
为AI聊天工具添加一个知识系统 之65 详细设计 之6 变形机器人及伺服跟随
人工智能
m0_743106464 小时前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学
m0_743106464 小时前
【论文笔记】TranSplat:深度refine的camera-required可泛化稀疏方法
论文阅读·深度学习·计算机视觉·3d·几何学
王老师青少年编程6 小时前
gesp(C++五级)(14)洛谷:B4071:[GESP202412 五级] 武器强化
开发语言·c++·算法·gesp·csp·信奥赛
DogDaoDao6 小时前
leetcode 面试经典 150 题:有效的括号
c++·算法·leetcode·面试··stack·有效的括号
井底哇哇7 小时前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证7 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪