【机器学习】23. 聚类-GMM: Gaussian Mixture Model

1. 定义和假设

定义:probabilistic clustering(model-base)

假设:数据服从正态分布

2. 算法内容

我们假设数据是由k个高斯(正态)分布混合生成的。每个分布有2个参数:μ和σ。

一个分布对应一个集群

从u和o的随机初始值开始

在每次估计后,我们计算每个例子属于每个分布(簇)的概率

利用概率,我们重新计算参数,直到它们不变。

案例

假设有20000个数据点,两个高斯分布,两个标准差都是2,使用GMM聚类。

  1. 初始化均值方差。标准差限定了,初始均值即可。随机初始化均值分别为-2和3
  2. 根据贝叶斯计算概率

    0.5 是每个分布的权重
  3. 更新均值

    新的均值是基于数据点的加权平均值计算的. 权重由每个数据点属于特定分布的概率决定
  4. 迭代和收敛, 重复步骤2和步骤3, 直到μ不再产生变化或变化非常小, 数据点最终分配给概率更高的分布

3. 和K-Means对比

k-means: crisp(hard)-assignment

GMM -- probabilistic(soft assignment)

GMM可以看作是k均值的泛化

GMM更灵活。允许椭圆的cluster而不是圆形

相关推荐
小哈里14 分钟前
【科研】ACM MM 论文 Latex 投稿模板修改(基于sample-sigconf-authordraft-v2.16)
人工智能·llm·科研·latex·cv·overleaf
优思学苑28 分钟前
过程能力指标CPK高为何现场仍不稳?
大数据·人工智能·管理·pdca·管理方法
AaronZZH29 分钟前
AG-UI:连接 AI 智能体与用户应用的开放协议
人工智能·ui
xsyaaaan43 分钟前
代码随想录Day39动态规划:115不同的子序列_583两个字符串的删除操作_72编辑距离_编辑距离总结
算法·动态规划
陈天伟教授44 分钟前
人工智能应用- 人工智能交叉:05. 从 AlphaFold1 到 AlphaFold2
人工智能·神经网络·算法·机器学习·推荐算法
Eloudy1 小时前
CHI 开发备忘 03 记 -- CHI spec 03 网络层
人工智能·ai·arch·hpc
Together_CZ1 小时前
ViT-5: Vision Transformers for The Mid-2020s—— 面向2020年代中期的视觉Transformer
人工智能·深度学习·ai·transformer·vit·vit-5·面向2020年代中期的视觉
badfl1 小时前
Gemini 3.1 Pro更新内容一览:介绍、令牌限制、如何使用
人工智能·ai
大模型任我行1 小时前
北大:LLM数学证明形式化验证
人工智能·语言模型·自然语言处理·论文笔记
Eloudy1 小时前
直接法 读书笔记 05 第5章 正交方法
人工智能·算法·机器学习