【机器学习】23. 聚类-GMM: Gaussian Mixture Model

1. 定义和假设

定义:probabilistic clustering(model-base)

假设:数据服从正态分布

2. 算法内容

我们假设数据是由k个高斯(正态)分布混合生成的。每个分布有2个参数:μ和σ。

一个分布对应一个集群

从u和o的随机初始值开始

在每次估计后,我们计算每个例子属于每个分布(簇)的概率

利用概率,我们重新计算参数,直到它们不变。

案例

假设有20000个数据点,两个高斯分布,两个标准差都是2,使用GMM聚类。

  1. 初始化均值方差。标准差限定了,初始均值即可。随机初始化均值分别为-2和3
  2. 根据贝叶斯计算概率

    0.5 是每个分布的权重
  3. 更新均值

    新的均值是基于数据点的加权平均值计算的. 权重由每个数据点属于特定分布的概率决定
  4. 迭代和收敛, 重复步骤2和步骤3, 直到μ不再产生变化或变化非常小, 数据点最终分配给概率更高的分布

3. 和K-Means对比

k-means: crisp(hard)-assignment

GMM -- probabilistic(soft assignment)

GMM可以看作是k均值的泛化

GMM更灵活。允许椭圆的cluster而不是圆形

相关推荐
漫随流水1 分钟前
leetcode算法(20.有效的括号)
数据结构·算法·leetcode
Hcoco_me2 分钟前
大模型面试题29:稀疏注意力是什么?
人工智能·rnn·深度学习·自然语言处理·word2vec
如果你想拥有什么先让自己配得上拥有3 分钟前
数、自然数、整数、有理数、无理数它们的定义由来和边界划分
算法
jackylzh7 分钟前
训练深度学习模型的提速方法
人工智能·深度学习
努力犯错8 分钟前
Qwen-Image-2512 vs. Z-Image Turbo:5 组提示词基准测试 - 哪个模型更好?
人工智能·开源
邴越22 分钟前
OpenAI领导力指南《在AI时代保持领先》
人工智能
暗魂b27 分钟前
UltraLED: Learning to See Everything in Ultra-High Dynamic Range Scenes 【论文阅读】
人工智能·深度学习
geneculture30 分钟前
纯粹融智学对智的认知发展三阶段:从概念澄清到学科奠基
人工智能·哲学与科学统一性·信息融智学·融智时代(杂志)·语言科学
B站计算机毕业设计之家34 分钟前
大数据毕业设计:基于python图书数据分析可视化系统 书籍大屏 爬虫 清洗 可视化 当当网书籍数据分析 Django框架 图书推荐 大数据
大数据·爬虫·python·机器学习·自然语言处理·数据分析·课程设计