【机器学习】23. 聚类-GMM: Gaussian Mixture Model

1. 定义和假设

定义:probabilistic clustering(model-base)

假设:数据服从正态分布

2. 算法内容

我们假设数据是由k个高斯(正态)分布混合生成的。每个分布有2个参数:μ和σ。

一个分布对应一个集群

从u和o的随机初始值开始

在每次估计后,我们计算每个例子属于每个分布(簇)的概率

利用概率,我们重新计算参数,直到它们不变。

案例

假设有20000个数据点,两个高斯分布,两个标准差都是2,使用GMM聚类。

  1. 初始化均值方差。标准差限定了,初始均值即可。随机初始化均值分别为-2和3
  2. 根据贝叶斯计算概率

    0.5 是每个分布的权重
  3. 更新均值

    新的均值是基于数据点的加权平均值计算的. 权重由每个数据点属于特定分布的概率决定
  4. 迭代和收敛, 重复步骤2和步骤3, 直到μ不再产生变化或变化非常小, 数据点最终分配给概率更高的分布

3. 和K-Means对比

k-means: crisp(hard)-assignment

GMM -- probabilistic(soft assignment)

GMM可以看作是k均值的泛化

GMM更灵活。允许椭圆的cluster而不是圆形

相关推荐
pythonSuperman6 分钟前
Correlation Matrix of Model Logits
人工智能·深度学习·机器学习
小华同学ai9 分钟前
7.9K star!免费解锁Cursor Pro功能,这个开源神器太强了!
人工智能·开源·github
AndrewHZ9 分钟前
【图像处理基石】什么是影调?并用python实现一个哈苏色彩影调
图像处理·人工智能·python·计算机视觉·影调·摄影语言
InTheMirror13 分钟前
Google 最新发布!A2A 与 MCP:引领智能体互联的协议之争?
人工智能
AI服务老曹22 分钟前
包含网络、平台、数据及安全四大体系的智慧快消开源了
运维·人工智能·安全·开源·音视频
神经星星22 分钟前
在线教程丨字节开源 InfiniteYou 图像生成框架,实现高保真面部特征迁移
人工智能·深度学习·机器学习
ayiya_Oese24 分钟前
[环境配置] 2. 依赖库安装
人工智能·python·深度学习·神经网络·目标检测·机器学习·计算机视觉
zhglhy26 分钟前
随机森林与决策树
算法·决策树·随机森林
扫地僧00931 分钟前
大模型在网络安全领域的七大应用
人工智能·安全·web安全·自动化·大模型·deepseek·微调参数
山花34 分钟前
最浅显易懂的自注意力机制讲解,杜绝QKV
人工智能·llm