【机器学习】23. 聚类-GMM: Gaussian Mixture Model

1. 定义和假设

定义:probabilistic clustering(model-base)

假设:数据服从正态分布

2. 算法内容

我们假设数据是由k个高斯(正态)分布混合生成的。每个分布有2个参数:μ和σ。

一个分布对应一个集群

从u和o的随机初始值开始

在每次估计后,我们计算每个例子属于每个分布(簇)的概率

利用概率,我们重新计算参数,直到它们不变。

案例

假设有20000个数据点,两个高斯分布,两个标准差都是2,使用GMM聚类。

  1. 初始化均值方差。标准差限定了,初始均值即可。随机初始化均值分别为-2和3
  2. 根据贝叶斯计算概率

    0.5 是每个分布的权重
  3. 更新均值

    新的均值是基于数据点的加权平均值计算的. 权重由每个数据点属于特定分布的概率决定
  4. 迭代和收敛, 重复步骤2和步骤3, 直到μ不再产生变化或变化非常小, 数据点最终分配给概率更高的分布

3. 和K-Means对比

k-means: crisp(hard)-assignment

GMM -- probabilistic(soft assignment)

GMM可以看作是k均值的泛化

GMM更灵活。允许椭圆的cluster而不是圆形

相关推荐
koo3641 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波1 小时前
机器学习日报02
人工智能·机器学习·neo4j
Elastic 中国社区官方博客1 小时前
介绍 Elastic 的 Agent Builder - 9.2
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
拓端研究室1 小时前
专题:2025年制造业数智化发展白皮书:数字化转型与智能制造|附130+份报告PDF、数据、绘图模板汇总下载
人工智能
就不爱吃大米饭1 小时前
ChatGPT官方AI浏览器正式推出:ChatGPT Atlas浏览器功能及操作全解!
人工智能·chatgpt
tainshuai1 小时前
YOLOv4 实战指南:单 GPU 训练的目标检测利器
yolo·目标检测·机器学习
牛客企业服务2 小时前
企业招聘新趋势:「AI面试」如何破解在线作弊难题?
人工智能·面试·职场和发展·招聘·ai招聘
京东零售技术2 小时前
扛起技术大梁的零售校招生们 | 1024技术人特别篇
算法
infominer2 小时前
数据处理像搭乐高?详解 RAGFlow Ingestion Pipeline
人工智能·ai-native
wudl55662 小时前
华工科技(000988)2025年4月22日—10月22日
大数据·人工智能·科技