【机器学习】23. 聚类-GMM: Gaussian Mixture Model

1. 定义和假设

定义:probabilistic clustering(model-base)

假设:数据服从正态分布

2. 算法内容

我们假设数据是由k个高斯(正态)分布混合生成的。每个分布有2个参数:μ和σ。

一个分布对应一个集群

从u和o的随机初始值开始

在每次估计后,我们计算每个例子属于每个分布(簇)的概率

利用概率,我们重新计算参数,直到它们不变。

案例

假设有20000个数据点,两个高斯分布,两个标准差都是2,使用GMM聚类。

  1. 初始化均值方差。标准差限定了,初始均值即可。随机初始化均值分别为-2和3
  2. 根据贝叶斯计算概率

    0.5 是每个分布的权重
  3. 更新均值

    新的均值是基于数据点的加权平均值计算的. 权重由每个数据点属于特定分布的概率决定
  4. 迭代和收敛, 重复步骤2和步骤3, 直到μ不再产生变化或变化非常小, 数据点最终分配给概率更高的分布

3. 和K-Means对比

k-means: crisp(hard)-assignment

GMM -- probabilistic(soft assignment)

GMM可以看作是k均值的泛化

GMM更灵活。允许椭圆的cluster而不是圆形

相关推荐
lingzhilab3 小时前
零知ESP32-S3 部署AI小智 2.1,继电器和音量控制以及页面展示音量
人工智能
两万五千个小时3 小时前
AI Agent 框架演进
人工智能
无限进步_3 小时前
【C语言&数据结构】对称二叉树:镜像世界的递归探索
c语言·开发语言·数据结构·c++·git·算法·visual studio
li星野3 小时前
OpenCV4X学习—核心模块Core
人工智能·opencv·学习
星辞树3 小时前
揭秘阿里 DIN:当深度学习遇上“千物千面”
算法
刘立军3 小时前
如何选择FAISS的索引类型
人工智能·算法·架构
柠柠酱4 小时前
【深度学习Day5】决战 CIFAR-10:手把手教你搭建第一个“正经”的卷积神经网络 (附调参心法)
深度学习
小芒果_014 小时前
整理归并排序
c++·算法·排序算法·信息学奥赛
gravity_w4 小时前
Hugging Face使用指南
人工智能·经验分享·笔记·深度学习·语言模型·nlp
牛三金4 小时前
匿踪查询沿革-Private Information Retrieval(PIR)
算法·安全