【机器学习】26. 聚类评估方法

聚类评估方法

  • [1. Unsupervised Measure](#1. Unsupervised Measure)
    • [1.1. Method 1: measure cohesion and separation](#1.1. Method 1: measure cohesion and separation)
      • [Silhouette coefficient](#Silhouette coefficient)
    • [Method 2:Correlation between two similarity matrices](#Method 2:Correlation between two similarity matrices)
    • [Method 3:Visual Inspection of similarity matrix](#Method 3:Visual Inspection of similarity matrix)
  • [2. Supervised measures](#2. Supervised measures)
  • [3. 决定cluster的数量](#3. 决定cluster的数量)
  • [4. 确定聚类趋势](#4. 确定聚类趋势)

1. Unsupervised Measure

  • 一个集群内的相似性高,集群之间的相似性低
  • 这些措施也被称为internal

1.1. Method 1: measure cohesion and separation

cohesion 和separation使用距离测量

cohesion :每个点与集群中心的距离(曼哈顿)

整体cohesion :直接相加

separation:每个类的中心的距离

整体separation:乘以数量权重再相加

也可以用平方距离 名字改成SSE BSE

Silhouette coefficient

对于某个点i:

a_I: 点i到簇内所有其他点的平均距离, 代表凝聚度

b_i: 首先找到点i到另一个簇中所有点的平均距离, 然后取这些平均距离的最小值

s的范围是[−1,1],越高越好

Method 2:Correlation between two similarity matrices

• 第一个相似度矩阵从距离得出

• 第二个相似度矩阵从聚类结果得出 0 不同,1相同

计算这两个相似度矩阵的相关性.

Method 3:Visual Inspection of similarity matrix

Plot the similarity matrix using coloring based on the similarity

主对角线的块状结构越清晰越好

2. Supervised measures

  • 将聚类结果与"ground truth"(专家提供的正确聚类标签)进行比较
  • 也叫External

3. 决定cluster的数量

elbow method

运行几个k的聚类算法,绘制SSE或其他无监督度量与簇的数量

寻找明显的膝盖或峰=大量的集群

4. 确定聚类趋势

Hopkins statistic

相关推荐
高德开放平台3 分钟前
高德开放平台JS API插件支持WebMCP:重新定义AI与网页交互的新时代
javascript·人工智能·开发者·高德地图
aircrushin6 分钟前
开源大模型涨价策略分析:Llama 3.5 与 GLM-5 的商业化博弈
人工智能
AI码上来20 分钟前
小智Pro:给小智装上眼睛,无需设备摄像头,MCP实现
人工智能
诚思报告YH22 分钟前
肽类治疗药物市场洞察:2026-2032年复合增长率(CAGR)为8.4%
大数据·人工智能
量子-Alex22 分钟前
【大模型智能体】作为数字原子与分子的AI智能体:大型语言模型在计算生物物理领域开启新纪元
人工智能·语言模型·自然语言处理
jerryinwuhan24 分钟前
LY模型流程
人工智能·深度学习·机器学习
诚思报告YH30 分钟前
血浆分馏产品市场前瞻:2026-2032年复合增长率(CAGR)为7.0%
人工智能
Eloudy33 分钟前
CUTLASS README v4.4.0
机器学习·gpu·cuda
康康的AI博客34 分钟前
AI驱动的法律智能化:通过多模型平台提升合同审查与法规解读的精准度
大数据·人工智能
码云数智-大飞35 分钟前
Clawdbot 的“永久记忆”机制探秘:如何让 AI 记住每一次对话
人工智能