【机器学习】26. 聚类评估方法

聚类评估方法

  • [1. Unsupervised Measure](#1. Unsupervised Measure)
    • [1.1. Method 1: measure cohesion and separation](#1.1. Method 1: measure cohesion and separation)
      • [Silhouette coefficient](#Silhouette coefficient)
    • [Method 2:Correlation between two similarity matrices](#Method 2:Correlation between two similarity matrices)
    • [Method 3:Visual Inspection of similarity matrix](#Method 3:Visual Inspection of similarity matrix)
  • [2. Supervised measures](#2. Supervised measures)
  • [3. 决定cluster的数量](#3. 决定cluster的数量)
  • [4. 确定聚类趋势](#4. 确定聚类趋势)

1. Unsupervised Measure

  • 一个集群内的相似性高,集群之间的相似性低
  • 这些措施也被称为internal

1.1. Method 1: measure cohesion and separation

cohesion 和separation使用距离测量

cohesion :每个点与集群中心的距离(曼哈顿)

整体cohesion :直接相加

separation:每个类的中心的距离

整体separation:乘以数量权重再相加

也可以用平方距离 名字改成SSE BSE

Silhouette coefficient

对于某个点i:

a_I: 点i到簇内所有其他点的平均距离, 代表凝聚度

b_i: 首先找到点i到另一个簇中所有点的平均距离, 然后取这些平均距离的最小值

s的范围是[−1,1],越高越好

Method 2:Correlation between two similarity matrices

• 第一个相似度矩阵从距离得出

• 第二个相似度矩阵从聚类结果得出 0 不同,1相同

计算这两个相似度矩阵的相关性.

Method 3:Visual Inspection of similarity matrix

Plot the similarity matrix using coloring based on the similarity

主对角线的块状结构越清晰越好

2. Supervised measures

  • 将聚类结果与"ground truth"(专家提供的正确聚类标签)进行比较
  • 也叫External

3. 决定cluster的数量

elbow method

运行几个k的聚类算法,绘制SSE或其他无监督度量与簇的数量

寻找明显的膝盖或峰=大量的集群

4. 确定聚类趋势

Hopkins statistic

相关推荐
槑槑紫29 分钟前
深度学习pytorch整体流程
人工智能·pytorch·深度学习
盼小辉丶43 分钟前
TensorFlow深度学习实战——去噪自编码器详解与实现
人工智能·深度学习·tensorflow
胖达不服输1 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吴佳浩1 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
kebijuelun2 小时前
百度文心 4.5 大模型详解:ERNIE 4.5 Technical Report
人工智能·深度学习·百度·语言模型·自然语言处理·aigc
算家计算2 小时前
ComfyUI-v0.3.43本地部署教程:新增 Omnigen 2 支持,复杂图像任务一步到位!
人工智能·开源
新智元2 小时前
毕业 7 年,身价破亿!清北 AI 天团血洗硅谷,奥特曼被逼分天价股份
人工智能·openai
新智元2 小时前
刚刚,苹果大模型团队负责人叛逃 Meta!华人 AI 巨星 + 1,年薪飙至 9 位数
人工智能·openai
Cyltcc2 小时前
如何安装和使用 Claude Code 教程 - Windows 用户篇
人工智能·claude·visual studio code
吹风看太阳3 小时前
机器学习16-总体架构
人工智能·机器学习