【机器学习】26. 聚类评估方法

聚类评估方法

  • [1. Unsupervised Measure](#1. Unsupervised Measure)
    • [1.1. Method 1: measure cohesion and separation](#1.1. Method 1: measure cohesion and separation)
      • [Silhouette coefficient](#Silhouette coefficient)
    • [Method 2:Correlation between two similarity matrices](#Method 2:Correlation between two similarity matrices)
    • [Method 3:Visual Inspection of similarity matrix](#Method 3:Visual Inspection of similarity matrix)
  • [2. Supervised measures](#2. Supervised measures)
  • [3. 决定cluster的数量](#3. 决定cluster的数量)
  • [4. 确定聚类趋势](#4. 确定聚类趋势)

1. Unsupervised Measure

  • 一个集群内的相似性高,集群之间的相似性低
  • 这些措施也被称为internal

1.1. Method 1: measure cohesion and separation

cohesion 和separation使用距离测量

cohesion :每个点与集群中心的距离(曼哈顿)

整体cohesion :直接相加

separation:每个类的中心的距离

整体separation:乘以数量权重再相加

也可以用平方距离 名字改成SSE BSE

Silhouette coefficient

对于某个点i:

a_I: 点i到簇内所有其他点的平均距离, 代表凝聚度

b_i: 首先找到点i到另一个簇中所有点的平均距离, 然后取这些平均距离的最小值

s的范围是[−1,1],越高越好

Method 2:Correlation between two similarity matrices

• 第一个相似度矩阵从距离得出

• 第二个相似度矩阵从聚类结果得出 0 不同,1相同

计算这两个相似度矩阵的相关性.

Method 3:Visual Inspection of similarity matrix

Plot the similarity matrix using coloring based on the similarity

主对角线的块状结构越清晰越好

2. Supervised measures

  • 将聚类结果与"ground truth"(专家提供的正确聚类标签)进行比较
  • 也叫External

3. 决定cluster的数量

elbow method

运行几个k的聚类算法,绘制SSE或其他无监督度量与簇的数量

寻找明显的膝盖或峰=大量的集群

4. 确定聚类趋势

Hopkins statistic

相关推荐
小小码农一只18 分钟前
AI与区块链结合的未来:数据安全与去中心化应用的探索
人工智能·去中心化·区块链
赵得C22 分钟前
深度学习中的梯度问题与激活函数选择:从理论到实践
人工智能·深度学习
金融小师妹28 分钟前
基于LSTM-GARCH混合模型:降息预期驱动金价攀升,白银刷新历史峰值的蒙特卡洛模拟验证
大数据·人工智能·深度学习·1024程序员节
A达峰绮32 分钟前
AI时代下的护城河:哪些行业正被重塑,哪些将永不消失?
人工智能·ai·aigc
机器之心35 分钟前
这下Altman急了,OpenAI紧急启动「红色警报」
人工智能·openai
新智元35 分钟前
OpenAI 危!DeepSeek 放大招:追平谷歌最强,手撕 GPT-5 High
人工智能·openai
新知图书35 分钟前
【新书推荐】《玩转FastGPT:像搭积木一样构建智能体》
人工智能·ai agent·智能体·大模型应用开发·大模型应用
EkihzniY43 分钟前
汽车VIN码识别:解锁汽车行业的智能密码
人工智能·汽车
机器之心1 小时前
华为新开源!扩散语言模型突破32K上下文,还解锁了「慢思考」
人工智能·openai
可触的未来,发芽的智生1 小时前
微论-自成长系统引发的NLP新生
javascript·人工智能·python·程序人生·自然语言处理