【机器学习】26. 聚类评估方法

聚类评估方法

  • [1. Unsupervised Measure](#1. Unsupervised Measure)
    • [1.1. Method 1: measure cohesion and separation](#1.1. Method 1: measure cohesion and separation)
      • [Silhouette coefficient](#Silhouette coefficient)
    • [Method 2:Correlation between two similarity matrices](#Method 2:Correlation between two similarity matrices)
    • [Method 3:Visual Inspection of similarity matrix](#Method 3:Visual Inspection of similarity matrix)
  • [2. Supervised measures](#2. Supervised measures)
  • [3. 决定cluster的数量](#3. 决定cluster的数量)
  • [4. 确定聚类趋势](#4. 确定聚类趋势)

1. Unsupervised Measure

  • 一个集群内的相似性高,集群之间的相似性低
  • 这些措施也被称为internal

1.1. Method 1: measure cohesion and separation

cohesion 和separation使用距离测量

cohesion :每个点与集群中心的距离(曼哈顿)

整体cohesion :直接相加

separation:每个类的中心的距离

整体separation:乘以数量权重再相加

也可以用平方距离 名字改成SSE BSE

Silhouette coefficient

对于某个点i:

a_I: 点i到簇内所有其他点的平均距离, 代表凝聚度

b_i: 首先找到点i到另一个簇中所有点的平均距离, 然后取这些平均距离的最小值

s的范围是[−1,1],越高越好

Method 2:Correlation between two similarity matrices

• 第一个相似度矩阵从距离得出

• 第二个相似度矩阵从聚类结果得出 0 不同,1相同

计算这两个相似度矩阵的相关性.

Method 3:Visual Inspection of similarity matrix

Plot the similarity matrix using coloring based on the similarity

主对角线的块状结构越清晰越好

2. Supervised measures

  • 将聚类结果与"ground truth"(专家提供的正确聚类标签)进行比较
  • 也叫External

3. 决定cluster的数量

elbow method

运行几个k的聚类算法,绘制SSE或其他无监督度量与簇的数量

寻找明显的膝盖或峰=大量的集群

4. 确定聚类趋势

Hopkins statistic

相关推荐
小陈phd2 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao3 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
wxl7812277 小时前
如何使用本地大模型做数据分析
python·数据挖掘·数据分析·代码解释器
ZHOU_WUYI7 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1237 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界8 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221518 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2518 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
FreedomLeo18 小时前
Python数据分析NumPy和pandas(四十、Python 中的建模库statsmodels 和 scikit-learn)
python·机器学习·数据分析·scikit-learn·statsmodels·numpy和pandas
浊酒南街9 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归