【机器学习】26. 聚类评估方法

聚类评估方法

  • [1. Unsupervised Measure](#1. Unsupervised Measure)
    • [1.1. Method 1: measure cohesion and separation](#1.1. Method 1: measure cohesion and separation)
      • [Silhouette coefficient](#Silhouette coefficient)
    • [Method 2:Correlation between two similarity matrices](#Method 2:Correlation between two similarity matrices)
    • [Method 3:Visual Inspection of similarity matrix](#Method 3:Visual Inspection of similarity matrix)
  • [2. Supervised measures](#2. Supervised measures)
  • [3. 决定cluster的数量](#3. 决定cluster的数量)
  • [4. 确定聚类趋势](#4. 确定聚类趋势)

1. Unsupervised Measure

  • 一个集群内的相似性高,集群之间的相似性低
  • 这些措施也被称为internal

1.1. Method 1: measure cohesion and separation

cohesion 和separation使用距离测量

cohesion :每个点与集群中心的距离(曼哈顿)

整体cohesion :直接相加

separation:每个类的中心的距离

整体separation:乘以数量权重再相加

也可以用平方距离 名字改成SSE BSE

Silhouette coefficient

对于某个点i:

a_I: 点i到簇内所有其他点的平均距离, 代表凝聚度

b_i: 首先找到点i到另一个簇中所有点的平均距离, 然后取这些平均距离的最小值

s的范围是[−1,1],越高越好

Method 2:Correlation between two similarity matrices

• 第一个相似度矩阵从距离得出

• 第二个相似度矩阵从聚类结果得出 0 不同,1相同

计算这两个相似度矩阵的相关性.

Method 3:Visual Inspection of similarity matrix

Plot the similarity matrix using coloring based on the similarity

主对角线的块状结构越清晰越好

2. Supervised measures

  • 将聚类结果与"ground truth"(专家提供的正确聚类标签)进行比较
  • 也叫External

3. 决定cluster的数量

elbow method

运行几个k的聚类算法,绘制SSE或其他无监督度量与簇的数量

寻找明显的膝盖或峰=大量的集群

4. 确定聚类趋势

Hopkins statistic

相关推荐
七牛云行业应用3 分钟前
从API调用到智能体编排:GPT-5时代的AI开发新模式
大数据·人工智能·gpt·openai·agent开发
StarPrayers.5 分钟前
用 PyTorch 搭建 CIFAR10 线性分类器:从数据加载到模型推理全流程解析
人工智能·pytorch·python
Ro Jace33 分钟前
模式识别与机器学习课程笔记(11):深度学习
笔记·深度学习·机器学习
碱化钾35 分钟前
Lipschitz连续及其常量
人工智能·机器学习
两万五千个小时41 分钟前
LangChain 入门教程:06LangGraph工作流编排
人工智能·后端
渡我白衣1 小时前
深度学习进阶(六)——世界模型与具身智能:AI的下一次跃迁
人工智能·深度学习
人工智能技术咨询.1 小时前
【无标题】
人工智能·深度学习·transformer
云卓SKYDROID1 小时前
无人机激光避障技术概述
人工智能·无人机·航电系统·高科技·云卓科技
蜉蝣之翼❉1 小时前
图像处理之浓度(AI 调研)
图像处理·人工智能·机器学习
mwq301231 小时前
Transformer: LayerNorm层归一化模块详解(PyTorch实现)
人工智能