吴恩达深度学习笔记(10)12.

多任务学习

什么时候多任务学习有意义:

能从共享低级特征中获益;每个任务拥有的数据相当相似;训练一个足够大的神经网络用于所有任务。

目标定位:

分类定位(单个对象)与检测不同(多个对象)

识别物体,并画出框,需要更多输出,如图四个标签,是个变量

地标检测:

标签需要再不同的照片中保持一致性

目标检测:用卷积神经网络和滑动窗口检测的算法进行

利用有标签的数据训练神经网络后,遍历所有红色窗口的图像,每次滑动都需要输入神经网络运行,之后取一个稍微大一点的区域的框,根据网络要求调整区域大小。

缺点:计算成本很大,因为剪出了很多不同的正方形图像。

利用卷积神经网络实现滑动窗口(滑动窗口的卷积方式实现)

将神经网络的全连接层转化为卷积层

其中:FC第一层,用400个5X5X16个滤波器。

对滑动窗口的卷积方式实现,是让卷积神经网络向前运算共享计算过程,运行卷积神经网络,用同样的参数,和滤波器

精确的预测边界框:

并交化:评价目标检测算法

非极大值抑制:输出有最大可能性的分类判断,抑制那些非最大可能性的临近的方框。

目前所学到的算法可能会对同一目标有多次检测,非极大值抑制确保算法只对每个对象得到一个检测的方法。

锚框

目前对象检测的问题,每个单元网格只能检测一个对象,一个单元网格需要检测多个对象怎么办。

首先定义两个不同形状的锚框,接着要能将两个预测跟两个锚框关联起来,需要定于交叉标签

**使用锚框之前,**需要将训练集的每一个对象及训练集图像都做一遍,将训练图像上的对象指定给对应的目标中心点的网格单元。

使用锚框时,每个对象都被指定给之前一样的网络单元,被指定含有对象中心点的网络单元,但现在被指定给一个lou值最高,具有对象形状的锚框,对象不仅分给格子,还分给与对象边界框lou值最高的锚框,将对象转换为目标标签(输出的标签随着对象种类增多维数增加)。

YOLO

如何构架训练集,假设要训练一个算法检测三个目标,行人,汽车,摩托车,不需要为背景分配第四个标签,假设有两个锚框,需要遍历九个网络构造适合的目标向量y

区域推荐网络:

候选区域

利用卷积代替滑动窗口的缺陷是,在没有目标的区域内进行了多次卷积计算,因此提出了伴随区域的卷积网络R-CNN。他尝试抓取少数有意义的区域,运行整块区域的运算,候选区域,通过分割算法实现,但是此算法的运行速度很慢。算法对每一个区域输出一个标签,同输出一个边界框,如果区域内真有目标,可以得到一个准确的边界框

有很多改进工作加速算法

语义分割

课程学习了目标识别,目标检测,进一步需要进行语义分割,判断检测到的对象周围的仔细轮廓。确切知道那个像素属于对象,哪个不属于。将目标识别网络更改为转置卷积入下所示:

转置卷积

转置卷积是单元架构的关键部分,将小的输入变成大的输出

单元架构的结构灵感(U-Net)

跳跃连接使得这一层具有低分辨率但高层次、空间的上下文信息,同时具有低层次但详尽的纹理信息,以便决定每一个像素是否为猫的一部分。

U-Net工作原理

​​​​​​​

相关推荐
龙智DevSecOps解决方案几秒前
现代服务管理指南:Jira Service Management + Rovo的AI自动化架构与实战应用
人工智能·自动化·atlassian·jira·itsm·服务管理
爱喝可乐的老王1 分钟前
神经网络的学习
人工智能·神经网络·学习
阿里巴巴与四十个小矮人4 分钟前
国科大2025秋自然语言处理基础与大模型期末
人工智能·自然语言处理
Cathy Bryant5 分钟前
softmax函数与logits
笔记·神经网络·机器学习·概率论·信息与通信
yumgpkpm12 分钟前
在AI语言大模型时代 Cloudera CDP(华为CMP 鲲鹏版)对自有知识的保护
人工智能·hadoop·华为·zookeeper·spark·kafka
沃达德软件13 分钟前
巡防勤务可视化管理
大数据·人工智能·数据挖掘·数据分析
小码hh13 分钟前
【PonitNet++】2. 点云输入深度神经网络前的常见表示形式
人工智能·神经网络·dnn
sww_102614 分钟前
Spring-AI MCP 源码浅析
java·人工智能·spring
HyperAI超神经14 分钟前
在线教程丨微软开源3D生成模型TRELLIS.2,3秒生成高分辨率的全纹理资产
人工智能·深度学习·机器学习·3d
IT阳晨。15 分钟前
【CNN卷积神经网络(吴恩达)】目标检测学习笔记
深度学习·目标检测·cnn