一些python torch函数

torch.tril 和 torch.triu

`torch.tril` 和 `torch.triu` 是 PyTorch 中用于处理矩阵的下三角和上三角部分的两个函数。它们的主要区别在于它们保留和填充矩阵的不同部分。

1. torch.tril (Lower Triangular):

  • 功能: 保留矩阵的下三角部分,包括主对角线,而将上三角部分填充为零。
  • 用法: `torch.tril(input, diagonal=0, out=None)`
  • 参数 :
    • `input`: 输入的张量(矩阵)。
    • `diagonal`: 指定要保留的对角线。`diagonal=0` 表示主对角线,`diagonal=-1` 表示主对角线以下的一条对角线,依此类推。
    • `out`: 可选的输出张量。
  • 示例:
python 复制代码
import torch

matrix = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
lower_triangular = torch.tril(matrix)
print(lower_triangular)
# 输出:
# tensor([[1, 0, 0],
#         [4, 5, 0],
#         [7, 8, 9]])

2. torch.triu(Upper Triangular)

  • 功能: 保留矩阵的上三角部分,包括主对角线,而将下三角部分填充为零。
  • 用法: `torch.triu(input, diagonal=0, out=None)`
  • 参数 :
    • `input`: 输入的张量(矩阵)。
    • `diagonal`: 指定要保留的对角线。`diagonal=0` 表示主对角线,`diagonal=1` 表示主对角线以上的一条对角线,依此类推。
    • `out`: 可选的输出张量。
  • 示例:
python 复制代码
import torch

matrix = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
upper_triangular = torch.triu(matrix)
print(upper_triangular)
# 输出:
# tensor([[1, 2, 3],
#         [0, 5, 6],
#         [0, 0, 9]])

总结:

  • `torch.tril` 用于获取矩阵的下三角部分,并将上三角部分置零。
  • `torch.triu` 用于获取矩阵的上三角部分,并将下三角部分置零。

这两个函数在矩阵操作和线性代数计算中非常有用,尤其是在需要分解矩阵或进行特定形式的矩阵运算时。

相关推荐
数据分享者31 分钟前
猫狗图像分类数据集-21616张标准化128x128像素JPEG图像-适用于计算机视觉教学研究与深度学习模型训练-研究人员、开发者和学生提供实验平台
深度学习·计算机视觉·分类
小途软件1 小时前
ssm607家政公司服务平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型
佛祖让我来巡山1 小时前
Numpy
机器学习·数据分析·numpy·矢量运算
汤姆yu1 小时前
基于深度学习的暴力行为识别系统
人工智能·深度学习
技术宅学长1 小时前
关于CLS与mean_pooling的一些笔记
人工智能·pytorch·笔记·pycharm
进击切图仔2 小时前
Realsense 相机测试及说明
网络·人工智能·深度学习·数码相机
007不打工人2 小时前
STC-GS安装pip install submodules/diff-gaussian-rasterization-radar报错
人工智能·机器学习
头发够用的程序员2 小时前
Ultralytics 代码库深度解读【六】:数据加载机制深度解析
人工智能·pytorch·python·深度学习·yolo·边缘计算·模型部署
540_5402 小时前
ADVANCE Day43
人工智能·python·深度学习
小途软件2 小时前
基于深度学习的垃圾识别分类研究与实现
人工智能·pytorch·python·深度学习·语言模型