一些python torch函数

torch.tril 和 torch.triu

`torch.tril` 和 `torch.triu` 是 PyTorch 中用于处理矩阵的下三角和上三角部分的两个函数。它们的主要区别在于它们保留和填充矩阵的不同部分。

1. torch.tril (Lower Triangular):

  • 功能: 保留矩阵的下三角部分,包括主对角线,而将上三角部分填充为零。
  • 用法: `torch.tril(input, diagonal=0, out=None)`
  • 参数 :
    • `input`: 输入的张量(矩阵)。
    • `diagonal`: 指定要保留的对角线。`diagonal=0` 表示主对角线,`diagonal=-1` 表示主对角线以下的一条对角线,依此类推。
    • `out`: 可选的输出张量。
  • 示例:
python 复制代码
import torch

matrix = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
lower_triangular = torch.tril(matrix)
print(lower_triangular)
# 输出:
# tensor([[1, 0, 0],
#         [4, 5, 0],
#         [7, 8, 9]])

2. torch.triu(Upper Triangular)

  • 功能: 保留矩阵的上三角部分,包括主对角线,而将下三角部分填充为零。
  • 用法: `torch.triu(input, diagonal=0, out=None)`
  • 参数 :
    • `input`: 输入的张量(矩阵)。
    • `diagonal`: 指定要保留的对角线。`diagonal=0` 表示主对角线,`diagonal=1` 表示主对角线以上的一条对角线,依此类推。
    • `out`: 可选的输出张量。
  • 示例:
python 复制代码
import torch

matrix = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
upper_triangular = torch.triu(matrix)
print(upper_triangular)
# 输出:
# tensor([[1, 2, 3],
#         [0, 5, 6],
#         [0, 0, 9]])

总结:

  • `torch.tril` 用于获取矩阵的下三角部分,并将上三角部分置零。
  • `torch.triu` 用于获取矩阵的上三角部分,并将下三角部分置零。

这两个函数在矩阵操作和线性代数计算中非常有用,尤其是在需要分解矩阵或进行特定形式的矩阵运算时。

相关推荐
白日做梦Q30 分钟前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
哥布林学者2 小时前
吴恩达深度学习课程四:计算机视觉 第四周:卷积网络应用 (二) 图像风格转换
深度学习·ai
BOF_dcb2 小时前
【无标题】
pytorch·深度学习·机器学习
咚咚王者2 小时前
人工智能之核心基础 机器学习 第一章 基础概述
人工智能·机器学习
Secede.3 小时前
Windows + WSL2 + Docker + CudaToolkit:深度学习环境配置
windows·深度学习·docker
江上鹤.1484 小时前
Day 50 CBAM 注意力机制
人工智能·深度学习
人工智能培训5 小时前
深度学习—卷积神经网络(1)
人工智能·深度学习·神经网络·机器学习·cnn·知识图谱·dnn
云天徽上5 小时前
【机器学习】Kaggle案例之Rossmann连锁药店销售额预测:时间序列与机器学习完美融合的实战指南
机器学习·数据挖掘·kaggle
啊巴矲5 小时前
小白从零开始勇闯人工智能:机器学习初级篇(贝叶斯算法与SVM算法)
人工智能·机器学习·支持向量机
CoovallyAIHub5 小时前
纯视觉的终结?顶会趋势:不会联觉(多模态)的CV不是好AI
深度学习·算法·计算机视觉