一些python torch函数

torch.tril 和 torch.triu

`torch.tril` 和 `torch.triu` 是 PyTorch 中用于处理矩阵的下三角和上三角部分的两个函数。它们的主要区别在于它们保留和填充矩阵的不同部分。

1. torch.tril (Lower Triangular):

  • 功能: 保留矩阵的下三角部分,包括主对角线,而将上三角部分填充为零。
  • 用法: `torch.tril(input, diagonal=0, out=None)`
  • 参数 :
    • `input`: 输入的张量(矩阵)。
    • `diagonal`: 指定要保留的对角线。`diagonal=0` 表示主对角线,`diagonal=-1` 表示主对角线以下的一条对角线,依此类推。
    • `out`: 可选的输出张量。
  • 示例:
python 复制代码
import torch

matrix = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
lower_triangular = torch.tril(matrix)
print(lower_triangular)
# 输出:
# tensor([[1, 0, 0],
#         [4, 5, 0],
#         [7, 8, 9]])

2. torch.triu(Upper Triangular)

  • 功能: 保留矩阵的上三角部分,包括主对角线,而将下三角部分填充为零。
  • 用法: `torch.triu(input, diagonal=0, out=None)`
  • 参数 :
    • `input`: 输入的张量(矩阵)。
    • `diagonal`: 指定要保留的对角线。`diagonal=0` 表示主对角线,`diagonal=1` 表示主对角线以上的一条对角线,依此类推。
    • `out`: 可选的输出张量。
  • 示例:
python 复制代码
import torch

matrix = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
upper_triangular = torch.triu(matrix)
print(upper_triangular)
# 输出:
# tensor([[1, 2, 3],
#         [0, 5, 6],
#         [0, 0, 9]])

总结:

  • `torch.tril` 用于获取矩阵的下三角部分,并将上三角部分置零。
  • `torch.triu` 用于获取矩阵的上三角部分,并将下三角部分置零。

这两个函数在矩阵操作和线性代数计算中非常有用,尤其是在需要分解矩阵或进行特定形式的矩阵运算时。

相关推荐
小狗照亮每一天11 分钟前
【菜狗看背景】自动驾驶发展背景——20251117
人工智能·机器学习·自动驾驶
大白IT13 分钟前
智能驾驶:从感知到规控的自动驾驶系统全解析
人工智能·机器学习·自动驾驶
数据与后端架构提升之路20 分钟前
英伟达的 Alpamayo-R1:利用因果链推理赋能自动驾驶模型和数据工程剖析
人工智能·机器学习·自动驾驶
致Great1 小时前
RAG在医疗领域的批判性评估、推荐算法等最新研究进展
算法·机器学习·推荐算法
木头左1 小时前
自适应门控循环单元GRU-O与标准LSTM在量化交易策略中的性能对比实验
深度学习·gru·lstm
哥布林学者2 小时前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架(三)多值预测与多分类
深度学习·ai
月下倩影时2 小时前
视觉学习篇——模型推理部署:从“炼丹”到“上桌”
人工智能·深度学习·学习
java1234_小锋2 小时前
[免费]基于python的Flask+Vue医疗疾病数据分析大屏可视化系统(机器学习随机森林算法+requests)【论文+源码+SQL脚本】
python·机器学习·数据分析·flask·疾病数据分析
高洁012 小时前
国内外具身智能VLA模型深度解析(2)国外典型具身智能VLA架构
深度学习·算法·aigc·transformer·知识图谱
小殊小殊2 小时前
从零手撸Mamba!
人工智能·深度学习