一些python torch函数

torch.tril 和 torch.triu

`torch.tril` 和 `torch.triu` 是 PyTorch 中用于处理矩阵的下三角和上三角部分的两个函数。它们的主要区别在于它们保留和填充矩阵的不同部分。

1. torch.tril (Lower Triangular):

  • 功能: 保留矩阵的下三角部分,包括主对角线,而将上三角部分填充为零。
  • 用法: `torch.tril(input, diagonal=0, out=None)`
  • 参数 :
    • `input`: 输入的张量(矩阵)。
    • `diagonal`: 指定要保留的对角线。`diagonal=0` 表示主对角线,`diagonal=-1` 表示主对角线以下的一条对角线,依此类推。
    • `out`: 可选的输出张量。
  • 示例:
python 复制代码
import torch

matrix = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
lower_triangular = torch.tril(matrix)
print(lower_triangular)
# 输出:
# tensor([[1, 0, 0],
#         [4, 5, 0],
#         [7, 8, 9]])

2. torch.triu(Upper Triangular)

  • 功能: 保留矩阵的上三角部分,包括主对角线,而将下三角部分填充为零。
  • 用法: `torch.triu(input, diagonal=0, out=None)`
  • 参数 :
    • `input`: 输入的张量(矩阵)。
    • `diagonal`: 指定要保留的对角线。`diagonal=0` 表示主对角线,`diagonal=1` 表示主对角线以上的一条对角线,依此类推。
    • `out`: 可选的输出张量。
  • 示例:
python 复制代码
import torch

matrix = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
upper_triangular = torch.triu(matrix)
print(upper_triangular)
# 输出:
# tensor([[1, 2, 3],
#         [0, 5, 6],
#         [0, 0, 9]])

总结:

  • `torch.tril` 用于获取矩阵的下三角部分,并将上三角部分置零。
  • `torch.triu` 用于获取矩阵的上三角部分,并将下三角部分置零。

这两个函数在矩阵操作和线性代数计算中非常有用,尤其是在需要分解矩阵或进行特定形式的矩阵运算时。

相关推荐
qwerasda12385244 分钟前
【深度学习实战】基于Faster R-CNN的新鲜枣果品质智能检测与分类系统完整实现教程
深度学习·r语言·cnn
pps-key1 小时前
ai交易算力研究
大数据·jvm·人工智能·机器学习
2401_841495641 小时前
【机器学习】限制性玻尔兹曼机(RBM)
人工智能·python·深度学习·神经网络·机器学习·无监督学习·限制性玻尔兹曼机
最晚的py1 小时前
cnn卷积层详解
人工智能·pytorch·cnn卷积层
WhereIsMyChair2 小时前
DPO 核心损失函数β调大可以控制不偏离ref模型太远
人工智能·算法·机器学习
DeepVis Research3 小时前
【Autonomous Driving/Sim】2026年度自动驾驶极端场景与车辆动力学仿真基准索引 (Benchmark Index)
人工智能·物联网·机器学习·自动驾驶·数据集
xixixi777773 小时前
SoC芯片本质——“系统级集成”
人工智能·机器学习·架构·pc·soc·集成·芯片
lisw054 小时前
工程软件化概述!
人工智能·科技·机器学习
Hcoco_me6 小时前
大模型面试题25:Softmax函数把“得分”变成“概率”的归一化工具
人工智能·rnn·深度学习·lstm·word2vec
纪伊路上盛名在6 小时前
矩阵微积分速通
深度学习·线性代数·机器学习·矩阵·微积分