一些python torch函数

torch.tril 和 torch.triu

`torch.tril` 和 `torch.triu` 是 PyTorch 中用于处理矩阵的下三角和上三角部分的两个函数。它们的主要区别在于它们保留和填充矩阵的不同部分。

1. torch.tril (Lower Triangular):

  • 功能: 保留矩阵的下三角部分,包括主对角线,而将上三角部分填充为零。
  • 用法: `torch.tril(input, diagonal=0, out=None)`
  • 参数 :
    • `input`: 输入的张量(矩阵)。
    • `diagonal`: 指定要保留的对角线。`diagonal=0` 表示主对角线,`diagonal=-1` 表示主对角线以下的一条对角线,依此类推。
    • `out`: 可选的输出张量。
  • 示例:
python 复制代码
import torch

matrix = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
lower_triangular = torch.tril(matrix)
print(lower_triangular)
# 输出:
# tensor([[1, 0, 0],
#         [4, 5, 0],
#         [7, 8, 9]])

2. torch.triu(Upper Triangular)

  • 功能: 保留矩阵的上三角部分,包括主对角线,而将下三角部分填充为零。
  • 用法: `torch.triu(input, diagonal=0, out=None)`
  • 参数 :
    • `input`: 输入的张量(矩阵)。
    • `diagonal`: 指定要保留的对角线。`diagonal=0` 表示主对角线,`diagonal=1` 表示主对角线以上的一条对角线,依此类推。
    • `out`: 可选的输出张量。
  • 示例:
python 复制代码
import torch

matrix = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
upper_triangular = torch.triu(matrix)
print(upper_triangular)
# 输出:
# tensor([[1, 2, 3],
#         [0, 5, 6],
#         [0, 0, 9]])

总结:

  • `torch.tril` 用于获取矩阵的下三角部分,并将上三角部分置零。
  • `torch.triu` 用于获取矩阵的上三角部分,并将下三角部分置零。

这两个函数在矩阵操作和线性代数计算中非常有用,尤其是在需要分解矩阵或进行特定形式的矩阵运算时。

相关推荐
yLDeveloper26 分钟前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_40 分钟前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2401_836235861 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs1 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
九河云2 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
2的n次方_2 小时前
CANN ascend-transformer-boost 架构解析:融合注意力算子管线、长序列分块策略与图引擎协同机制
深度学习·架构·transformer
人工智能培训2 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
pp起床4 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
阿杰学AI4 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
芷栀夏5 小时前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络