给 Ollama 穿上 GPT 的外衣

上一篇我们介绍了如何在本地部署 ollama 运行 llama3 大模型。过程是相当简单的。但是现在给大模型交流只能在命令行窗口进行。这样的话就只能你自己玩了。独乐乐不如众乐乐嘛。我们接下来说一下如何部署 open-webui 给 ollama 加一个 webui,这样用户就可以通过浏览器访问我们的本地大模型了,体验非常类似 chatGPT。

Open-WebUI

Open-WebUI 是一个开源的用户界面框架,旨在提供简便的工具和接口,帮助用户轻松地访问和管理各种深度学习模型,尤其是大规模预训练语言模型。以下是对Open-WebUI的简要介绍:

  • 开源框架: Open-WebUI 是一个开源项目,提供了灵活且可定制的用户界面,用于与各种深度学习模型进行交互。

  • 模型管理: 通过 Open-WebUI,用户可以方便地加载、配置和管理多个深度学习模型,包括 GPT-4、BERT 等大规模预训练模型。

  • 用户友好: 它提供了直观的界面,简化了模型使用过程,使非技术用户也能轻松上手进行自然语言处理任务。

  • 集成支持: Open-WebUI 支持与多种后端深度学习框架(如 TensorFlow、PyTorch)集成,提供高效的推理和训练功能。

扩展性强: 用户可以根据需求自定义和扩展界面功能,以适应不同的应用场景和任务需求。

总之,Open-WebUI 为用户提供了一个高效、直观的界面,使得大规模深度学习模型的使用更加便捷和高效。

地址:https://github.com/open-webui/open-webui

使用 Docker 部署

使用 Docker 部署非常简单。如果 ollama 跟 open-webui 部署在同一个机器上,那么只需要运行一下代码就可以。

复制代码
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

如果 ollama 部署在其他服务器就用如下命令:

复制代码
docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=https://example.com -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

OLLAMA_BASE_URL 是指 ollama 暴露的API地址,一般为服务器地址加 11434。如:OLLAMA_BASE_URL=http://192.168.0.111:11434

使用 Open-WebUI

部署完之后,我们在浏览器里打开 http://localhost:3000,就会出现 Open-WebUI 的界面。看起来跟 chatGPT 不能说一模一样么,也是毫无区别。随便填写一个邮箱后就可以注册第一个账户。

在右上角可以选择已经存在的模型。也可以搜索其他模型,然后直接安装,这个就非常方便了。

让我们下载一个传说中巨牛比的国产大模型 Qwen2 试试。随便问个问题,好像还不错。

总结

这一篇内容比较短,就是演示了一下如何使用 Open-WebUI 项目搭建一个本地的 chat 服务。这样就可以把本地大模型共享出去。这样你全家人都可以访问你部署的大模型了。当然你要是部署到外网的服务器上那就是给全世界人用了。

当然本地大模型所能回答的问题都是公开领域的知识,比如你问它你们家有几口人肯定是不知道的。下次我们会将如何让大模型学习你的私有知识,也就是搭建一个本地的知识库。

关注我的公众号一起玩转技术

相关推荐
憨憨睡不醒啊1 小时前
如何让LLM智能体开发助力求职之路——构建属于你的智能体开发知识体系📚📚📚
面试·程序员·llm
柯南二号2 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
Q同学4 小时前
TORL:工具集成强化学习,让大语言模型学会用代码解题
深度学习·神经网络·llm
人肉推土机8 小时前
AI Agent 架构设计:ReAct 与 Self-Ask 模式对比与分析
人工智能·大模型·llm·agent
洗澡水加冰8 小时前
n8n搭建多阶段交互式工作流
后端·llm
中杯可乐多加冰13 小时前
【解决方案-RAGFlow】RAGFlow显示Task is queued、 Microsoft Visual C++ 14.0 or greater is required.
人工智能·大模型·llm·rag·ragflow·deepseek
Baihai IDP1 天前
“一代更比一代强”:现代 RAG 架构的演进之路
ai·llm·rag·genai·白海科技·检索增强生成
Q同学1 天前
Qwen3开源最新Embedding模型
深度学习·神经网络·llm
用户84913717547161 天前
🚀 为什么猫和狗更像?用“向量思维”教会 AI 懂语义!
人工智能·llm
AI大模型知识1 天前
Qwen3+Ollama本地部署MCP初体验
人工智能·llm