OCR、语音识别与信息抽取:免费开源的AI平台在医疗领域的创新应用

一、系统概述

在医疗行业中,大量数据来自手写病历、医学影像报告、患者对话记录等非结构化数据源。这些数据常常存在信息碎片化和管理困难的问题,给医务人员的工作带来了不便。思通数科AI多模态能力平台正是为了解决这一行业痛点而生,产品集成了OCR、语音识别和信息抽取技术,能够自动识别、提取和整理医疗数据,从而极大提升数据获取和处理效率,助力医疗行业迈向智能化转型。

二、应用场景

  1. 自动化病历信息采集

医院的住院部和门诊部每天处理大量手写或打印的病历文档,医务人员常因需要手动录入数据而耗时耗力,且存在录入错误的风险。思通数科的AI平台通过OCR技术自动识别手写病历中的患者信息、诊断结果、医生签字等要素,并将这些信息转换为结构化数据,直接上传至医院的电子病历系统。在这过程中,平台通过语义理解和信息抽取技术精确分类信息类型并标记重要字段,减少了手动录入的工作量。医院工作人员反馈,通过平台,录入效率提升约60%,并避免了90%以上的录入错误。

  1. 医学影像报告分析与归档

放射科每天生成的影像报告数据量巨大,这些数据往往散落在不同系统中,管理不便。AI平台结合OCR和信息抽取技术,可自动识别影像报告中的关键数据,包括病灶部位、影像描述、检测日期等信息,并按病种归档。通过这些自动化流程,平台帮助医院构建了标准化的影像数据管理系统,不仅提升了管理效率,还方便医生快速获取患者的历史影像报告数据,对后续诊断和治疗提供了数据支持。影像报告录入时间缩短至原来的1/3,且影像数据准确率达到99%。

  1. 患者问诊记录整理与分析

在日常门诊问诊中,医生与患者之间的交流往往包含大量关键信息,如症状描述、用药历史、家族病史等。平台的语音识别功能能自动将问诊过程中的语音记录转化为文本数据,结合信息抽取技术对文本进行关键信息标记和分析。例如,系统可以自动识别患者提到的症状和病史内容,并整理生成病历记录。医生反映,通过平台整理的问诊数据完整且易于调阅,问诊记录管理效率提升50%,并减少了医生录入病历的时间。

三、技术架构与兼容性

思通数科AI平台提供了开放API,支持主流的企业系统如ERP、CRM的无缝集成。平台兼容多种语言和协议(如REST、SOAP)以及Docker、Kubernetes等主流容器技术,可实现快速部署与弹性扩展。此外,平台提供丰富的开发接口,允许企业基于自身业务需求进行二次开发或模块扩展,保证了系统的灵活性和可扩展性。

相关推荐
sp_fyf_20241 分钟前
【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
CoderIsArt4 分钟前
基于 BP 神经网络整定的 PID 控制
人工智能·深度学习·神经网络
开源社17 分钟前
一场开源视角的AI会议即将在南京举办
人工智能·开源
FreeIPCC18 分钟前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
机器之心36 分钟前
全球十亿级轨迹点驱动,首个轨迹基础大模型来了
人工智能·后端
z千鑫37 分钟前
【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南
人工智能·pytorch·深度学习·aigc·tensorflow·keras·codemoss
EterNity_TiMe_38 分钟前
【论文复现】神经网络的公式推导与代码实现
人工智能·python·深度学习·神经网络·数据分析·特征分析
机智的小神仙儿1 小时前
Query Processing——搜索与推荐系统的核心基础
人工智能·推荐算法
AI_小站1 小时前
RAG 示例:使用 langchain、Redis、llama.cpp 构建一个 kubernetes 知识库问答
人工智能·程序人生·langchain·kubernetes·llama·知识库·rag
Doker 多克1 小时前
Spring AI 框架使用的核心概念
人工智能·spring·chatgpt