点云论文阅读-1-pointnet++

pointnet局限性:不能获取局部结构信息

作者提出pointnet++需要解决的问题

  • 如何生成点云的分区(需要保证每一个分区具有相似的结构,使学习算法的参数在局部共享)
  • 如何通过一个局部特征学习算法抽象点云或局部特征

解决方法

  • 局部特征学习算法就是PointNet
  • 分区则是选取了在最底层的欧氏空间内由质心(centroid)和尺寸(scale)描述的球形。为了保证整个点云被均匀覆盖,质心的选择应用了farthest point sampling(FPS)算法

难点

如何确定球的尺寸,类似于如何确定CNN的卷积核尺寸。

作者主要贡献:

利用了多尺度邻域以同时实现鲁棒性和细节获取

在非均匀采样密度下的鲁棒特征学习:两个密度适应网络结构:多尺度分组(MSG)和多分辨率分组(MRG)

1、Multi-scale grouping (MSG) MSG方法如上图左,就是在每一个分组层都通过多个尺度(设置多个半径值)来确定每一个中心点的领域范围,每一个范围都经过PointNet提取特征,再将得到的多个范围的特征concatenate起来,得到一个多尺度的新特征。

2. Multi-resolution grouping (MRG) 在MSG方法中,每一个中心点都需要多个patch的选取和卷积,计算量大,所以提出了MRG方法。如上图右所示,新特征由两部分concatenate得到,左边特征向量是通过较低层即L_{i-1}层经过PointNet提取得到,右边特征向量是对当前层中心点对应的patch进行PointNet得到。当点云密度不均时,可以通过判断当前patch的点云密度给予左右两个特征向量不同的权重。例如,当patch中密度过小,左边特征向量中包含的点更稀疏,容易受到抽样不足的影响,因此提高右边特征向量的权重。

相关推荐
lly_csdn12338 分钟前
【Image Captioning】DynRefer
python·深度学习·ai·图像分类·多模态·字幕生成·属性识别
速融云1 小时前
汽车制造行业案例 | 发动机在制造品管理全解析(附解决方案模板)
大数据·人工智能·自动化·汽车·制造
AI明说1 小时前
什么是稀疏 MoE?Doubao-1.5-pro 如何以少胜多?
人工智能·大模型·moe·豆包
XianxinMao1 小时前
重构开源LLM分类:从二分到三分的转变
人工智能·语言模型·开源
TURING.DT2 小时前
模型部署:TF Serving 的使用
深度学习·tensorflow
Elastic 中国社区官方博客2 小时前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
云天徽上2 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
大嘴吧Lucy2 小时前
大模型 | AI驱动的数据分析:利用自然语言实现数据查询到可视化呈现
人工智能·信息可视化·数据分析
AI技术控3 小时前
计算机视觉算法实战——无人机检测
算法·计算机视觉·无人机
艾思科蓝 AiScholar3 小时前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学