点云论文阅读-1-pointnet++

pointnet局限性:不能获取局部结构信息

作者提出pointnet++需要解决的问题

  • 如何生成点云的分区(需要保证每一个分区具有相似的结构,使学习算法的参数在局部共享)
  • 如何通过一个局部特征学习算法抽象点云或局部特征

解决方法

  • 局部特征学习算法就是PointNet
  • 分区则是选取了在最底层的欧氏空间内由质心(centroid)和尺寸(scale)描述的球形。为了保证整个点云被均匀覆盖,质心的选择应用了farthest point sampling(FPS)算法

难点

如何确定球的尺寸,类似于如何确定CNN的卷积核尺寸。

作者主要贡献:

利用了多尺度邻域以同时实现鲁棒性和细节获取

在非均匀采样密度下的鲁棒特征学习:两个密度适应网络结构:多尺度分组(MSG)和多分辨率分组(MRG)

1、Multi-scale grouping (MSG) MSG方法如上图左,就是在每一个分组层都通过多个尺度(设置多个半径值)来确定每一个中心点的领域范围,每一个范围都经过PointNet提取特征,再将得到的多个范围的特征concatenate起来,得到一个多尺度的新特征。

2. Multi-resolution grouping (MRG) 在MSG方法中,每一个中心点都需要多个patch的选取和卷积,计算量大,所以提出了MRG方法。如上图右所示,新特征由两部分concatenate得到,左边特征向量是通过较低层即L_{i-1}层经过PointNet提取得到,右边特征向量是对当前层中心点对应的patch进行PointNet得到。当点云密度不均时,可以通过判断当前patch的点云密度给予左右两个特征向量不同的权重。例如,当patch中密度过小,左边特征向量中包含的点更稀疏,容易受到抽样不足的影响,因此提高右边特征向量的权重。

相关推荐
AI改变未来2 分钟前
我们该如何使用DeepSeek帮我们减负?
人工智能·deepseek
武乐乐~5 分钟前
论文精读:YOLO-UniOW: Efficient Universal Open-World Object Detection
人工智能·yolo·目标检测
Leinwin5 分钟前
GPT-4.1和GPT-4.1-mini系列模型支持微调功能,助力企业级智能应用深度契合业务需求
人工智能
唐兴通个人6 分钟前
知名人工智能AI培训公开课内训课程培训师培训老师专家咨询顾问唐兴通AI在金融零售制造业医药服务业创新实践应用
人工智能
MVP-curry-萌神23 分钟前
FPGA图像处理(六)------ 图像腐蚀and图像膨胀
图像处理·人工智能·fpga开发
struggle202539 分钟前
ebook2audiobook开源程序使用动态 AI 模型和语音克隆将电子书转换为带有章节和元数据的有声读物。支持 1,107+ 种语言
人工智能·开源·自动化
深空数字孪生42 分钟前
AI+可视化:数据呈现的未来形态
人工智能·信息可视化
sbc-study1 小时前
双向Transformer:BERT(Bidirectional Encoder Representations from Transformers)
深度学习·bert·transformer
爱补鱼的猫猫1 小时前
24、DeepSeek-V3论文笔记
论文阅读
鸿蒙布道师1 小时前
宇树科技安全漏洞揭示智能机器人行业隐忧
运维·网络·科技·安全·机器学习·计算机视觉·机器人