hive复杂数据类型Array & Map & Struct & 炸裂函数explode

1、Array的使用

复制代码
create table tableName(
......
colName array<基本类型>
......
)

说明:下标从0开始,越界不报错,以null代替

复制代码
arr1.txt

zhangsan	78,89,92,96
lisi	67,75,83,94
王五	23,12

新建表:

复制代码
create table arr1(
  name string,
  scores array<int>
)
row format delimited
fields terminated by '\t'
collection items terminated by ',';

加载数据:

复制代码
load data local inpath '/home/hivedata/arr1.txt' into table arr1;

hive (yhdb)> select * from arr1;
OK
arr1.name       arr1.scores
zhangsan        [78,89,92,96]
lisi    [67,75,83,94]
王五    [23,12]
Time taken: 0.32 seconds, Fetched: 3 row(s)

需求:

复制代码
1、查询每一个学生的第一个成绩
select name,scores[0] from arr1;
name    _c1
zhangsan        78
lisi    67
王五    23
2、查询拥有三科成绩的学生的第二科成绩
select name,scores[1] from arr1 where size(scores) >=3;

3、查询所有学生的总成绩
select name,scores[0]+scores[1]+nvl(scores[2],0)+nvl(scores[3],0) from arr1;

以上写法有局限性,因为你不知道有多少科成绩,假如知道了,这样写也太Low

2、展开函数的使用 explode

为什么学这个,因为我们想把数据,变为如下格式

复制代码
zhangsan        78
zhangsan        89
zhangsan        92
zhangsan        96
lisi	67
lisi	75
lisi	83
lisi	94
王五	23
王五	12

explode 专门用于炸集合。

复制代码
select explode(scores) from arr1;

col
78
89
92
96
67
75
83
94
23
12

想当然的以为加上name 就OK ,错误!
hive (yhdb)> select name,explode(scores) from arr1;
FAILED: SemanticException [Error 10081]: UDTF's are not supported outside the SELECT clause, nor nested in expressions

-- lateral view:虚拟表。

会将UDTF函数生成的结果放到一个虚拟表中,然后这个虚拟表会和输入行进行join来达到数据聚合的目的。

具体使用:

复制代码
select name,cj from arr1 lateral view explode(scores) mytable as cj;

解释一下:
lateral view explode(scores) 形成一张虚拟的表,表名需要自己起
里面的列有几列,就起几个别名,其他的就跟正常的虚拟表一样了。

name    cj
zhangsan        78
zhangsan        89
zhangsan        92
zhangsan        96
lisi    67
lisi    75
lisi    83
lisi    94
王五    23
王五    12

select name,sum(cj) from arr1 lateral view explode(scores) mytable as cj group by name;
等同于如下写法:
select name,sum(score) from
   (select name,score from arr1 lateral view explode(scores) myscore as score ) t group by name;

需求4:查询每个人的最后一科的成绩

select name,scores[size(scores)-1] from arr1;

3、Map的使用

语法格式:

复制代码
create table tableName(
.......
colName map<T,T>
......
)

上案例:

复制代码
zhangsan	chinese:90,math:87,english:63,nature:76
lisi	chinese:60,math:30,english:78,nature:0
wangwu	chinese:89,math:25

建表:

复制代码
create table map1(
  name string,
  scores map<string,int>
)
row format delimited
fields terminated by '\t'
collection items terminated by ','
map keys terminated by ':';

加载数据:

复制代码
load data local inpath '/home/hivedata/map1.txt' into table map1;

需求:

复制代码
需求一:
#查询数学大于35分的学生的英语和自然成绩
select name,scores['english'],scores['nature'] from map1
where scores['math'] > 35;

需求二:-- 查看每个人的前两科的成绩总和
select name,scores['chinese']+scores['math'] from map1;

OK
name    _c1
zhangsan        177
lisi    90
wangwu  114
Time taken: 0.272 seconds, Fetched: 3 row(s)

需求三:将数据展示为:
-- 展开效果
zhangsan	chinese		90
zhangsan	math	87
zhangsan	english 	63
zhangsan	nature		76

select name,subject,cj   from map1 lateral view explode(scores) mytable as subject,cj ;

name    subject cj
zhangsan        chinese 90
zhangsan        math    87
zhangsan        english 63
zhangsan        nature  76
lisi    chinese 60
lisi    math    30
lisi    english 78
lisi    nature  0
wangwu  chinese 89
wangwu  math    25

需求四:统计每个人的总成绩
select name,sum(cj)   from map1 lateral view explode(scores) mytable as subject,cj  group by name;
假如根据总成绩降序排序,不能在order by 中使用虚拟表的别名
select name,sum(score) sumScore from map1 lateral view explode(scores) myscore as subject,score group by name order by sumScore desc;

行转列

复制代码
需求5:
-- 将下面的数据格式
zhangsan        chinese 90
zhangsan        math    87
zhangsan        english 63
zhangsan        nature  76
lisi    chinese 60
lisi    math    30
lisi    english 78
lisi    nature  0
wangwu  chinese 89
wangwu  math    25
wangwu  english 81
wangwu  nature  9
-- 转成:
zhangsan chinese:90,math:87,english:63,nature:76
lisi chinese:60,math:30,english:78,nature:0
wangwu chinese:89,math:25,english:81,nature:9

造一些数据(新建表):

复制代码
create table map_temp as
select name,subject,cj   from map1 lateral view explode(scores) mytable as subject,cj ;

第一步,先将学科和成绩形成一个kv对,其实就是字符串拼接

复制代码
学习一下 concat的用法:
hive (yhdb)> select concat('hello','world');
OK
_c0
helloworld
Time taken: 0.333 seconds, Fetched: 1 row(s)
hive (yhdb)> select concat('hello','->','world');
OK
_c0
hello->world
Time taken: 0.347 seconds, Fetched: 1 row(s)

实战一下:
select name,concat(subject,":",cj) from map_temp;

结果:
name    _c1
zhangsan        chinese:90
zhangsan        math:87
zhangsan        english:63
zhangsan        nature:76
lisi    chinese:60
lisi    math:30
lisi    english:78
lisi    nature:0
wangwu  chinese:89
wangwu  math:25

以上这个结果再合并:
select name,collect_set(concat(subject,":",cj)) from map_temp
group by name;

lisi    ["nature:0","english:78","math:30","chinese:60"]
wangwu  ["math:25","chinese:89"]
zhangsan        ["nature:76","english:63","math:87","chinese:90"]
将集合中的元素通过逗号进行拼接:
select name,concat_ws(",",collect_set(concat(subject,":",cj))) from map_temp group by name;

结果:
zhangsan chinese:90,math:87,english:63,nature:76
lisi chinese:60,math:30,english:78,nature:0
wangwu chinese:89,math:25,english:81,nature:9



学习到了三个函数:
concat 进行字符串拼接
collect_set() 将分组的数据变成一个set集合。里面的元素是不可重复的。
collect_list(): 里面是可以重复的。
concat_ws(分隔符,集合) : 将集合中的所有元素通过分隔符变为字符串。

想将数据变为:

复制代码
lisi    {"chinese":"60","math":"30","english":"78","nature":"0"}
wangwu  {"chinese":"89","math":"25"}
zhangsan        {"chinese":"90","math":"87","english":"63","nature":"76"}

4、Struct结构体

复制代码
create table tableName(
........
colName struct<subName1:Type,subName2:Type,........>
........
)

有点类似于java类
调用的时候直接.
colName.subName

数据准备:

复制代码
zhangsan	90,87,63,76
lisi	60,30,78,0
wangwu	89,25,81,9

创建表:

复制代码
create table if not exists struct1(
name string,
score struct<chinese:int,math:int,english:int,natrue:int>
)
row format delimited 
fields terminated by '\t'
collection items terminated by ',';

加载数据:

复制代码
load data local inpath '/home/hivedata/struct1.txt' into table struct1;

查看数据,有点像map:

复制代码
hive (yhdb)> select * from struct1;
OK
struct1.name    struct1.score
zhangsan        {"chinese":90,"math":87,"english":63,"natrue":76}
lisi    {"chinese":60,"math":30,"english":78,"natrue":0}
wangwu  {"chinese":89,"math":25,"english":81,"natrue":9}
Time taken: 0.272 seconds, Fetched: 3 row(s)

查询数学大于35分的学生的英语和语文成绩

select name, score.english,score.chinese from struct1 
 where score.math > 35;

 这个看着和map很像,所以我认为map里 也可以使用 xxx.xxx
 或者说我这里也可以使用[]
经过尝试:不可以。
相关推荐
这周也會开心2 分钟前
Spring框架
java·数据库·spring
努力成为一个程序猿.29 分钟前
【问题排查】hadoop-shaded-guava依赖问题
大数据·hadoop·spark
gys989535 分钟前
uniapp使用sqlite模块
数据库·sqlite·uni-app
达芬奇科普1 小时前
俄罗斯全面禁止汽油出口对俄、欧、中能源市场的多维影响分析
大数据·人工智能
凌冰_1 小时前
Java Maven+lombok+MySql+HikariCP 操作数据库
java·数据库·maven
武子康1 小时前
Java-165 Neo4j 图论详解 欧拉路径与欧拉回路 10 分钟跑通:Python NetworkX 判定实战
java·数据库·性能优化·系统架构·nosql·neo4j·图论
岳麓丹枫0011 小时前
pg_stat 视图介绍
数据库·postgresql
弗朗凌戈1 小时前
影院票务管理系统oracle
数据库·oracle·vr
·云扬·2 小时前
MySQL主从数据一致性校验工具:pt-table-checksum 详解
数据库·sql·mysql
wudl55662 小时前
Python 虚拟环境和包管理
数据库·python·sqlite