【杂记】vLLM如何指定GPU单卡/多卡离线推理

写在前面

仅作个人学习与记录用。主要记录vLLM指定GPU单卡/多卡离线推理的方法。


vLLM官方文档中Environment Variables页面有对指定GPU方法的唯一描述:

bash 复制代码
# used to control the visible devices in the distributed setting
"CUDA_VISIBLE_DEVICES":
lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),

在vLLM离线推理(Offline Inference)时,可以通过设置tensor_parallel_size = 1/2/3...,来使用默认的单卡GPU或多卡GPU来推理。但是如果想在指定的单卡/多卡GPU中运行vLLM,那么应该如何以及在哪里设置CUDA_VISIBLE_DEVICES?

一般来说,使用下面三种方法就可以了:

shell指定:

bash 复制代码
CUDA_VISIBLE_DEVICES=3  python train.py

另一种shell指定(不推荐):

bash 复制代码
export CUDA_VISIBLE_DEVICES=3  
python train.py

代码内部指定:

python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"]="3"

但是在实际执行代码过程中,可能存在失效的情况。即无论怎么修改可见的GPU编号,最后程序都是按照顺序从第0块开始使用。问题出在哪里呢?

假设一共有四卡,先使用nvidia-smi -L查看可用GPU及序号:

bash 复制代码
GPU 0: GeForce RTX XXX (UUID: xxx)
GPU 1: GeForce RTX XXX (UUID: xxx)
GPU 2: GeForce RTX XXX (UUID: xxx)
GPU 3: NVIDIA XXX (UUID: xxx)

而在代码中测试,会得到:

python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import torch
print(torch.cuda.get_device_name(0))  # 返回GPU名称,设备索引默认从0开始
print(torch.cuda.current_device())  # 返回现在使用的GPU索引

输出:
1
GeForce RTX XXX
0
python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
print(torch.cuda.get_device_name(0))  # 返回GPU名称,设备索引默认从0开始
print(torch.cuda.current_device())  # 返回现在使用的GPU索引

输出:
NVIDIA XXX
0

这是因为nvidia-smi命令中的GPU序号与代码中的GPU序号是相反的,nvidia-smi的 GPU序号默认使用PCI_BUS_ID,而py文件代码默认GPU序号遵循FASTEST_FIRST

那么可以修改上述指定方式如下:

shell指定:

bash 复制代码
CUDA_VISIBLE_DEVICES=3 export CUDA_DEVICE_ORDER="PCI_BUS_ID" python train.py

另一种shell指定(不推荐):

bash 复制代码
export CUDA_VISIBLE_DEVICES=3  
export CUDA_DEVICE_ORDER="PCI_BUS_ID"
python train.py

代码内部指定:

python 复制代码
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "3"

另外需要注意,如果你在离线推理时import了pytorch等包,最好将os.environ["CUDA_VISIBLE_DEVICES"] = "3"移到import torch等代码之前,紧随import os之后,即按照如下的方式:

python 复制代码
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="3"
import torch
......
相关推荐
sbc-study2 分钟前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz10 分钟前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子19 分钟前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor
要努力啊啊啊20 分钟前
Reranker + BM25 + FAISS 构建高效的多阶段知识库检索系统一
人工智能·语言模型·自然语言处理·faiss
EasyDSS27 分钟前
国标GB28181设备管理软件EasyGBS远程视频监控方案助力高效安全运营
网络·人工智能
蓝婷儿30 分钟前
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
开发语言·python·学习
春末的南方城市36 分钟前
港科大&快手提出统一上下文视频编辑 UNIC,各种视频编辑任务一网打尽,还可进行多项任务组合!
人工智能·计算机视觉·stable diffusion·aigc·transformer
小喵喵生气气39 分钟前
Python60日基础学习打卡Day46
深度学习·机器学习
叶子2024221 小时前
学习使用YOLO的predict函数使用
人工智能·学习·yolo
chao_7891 小时前
链表题解——两两交换链表中的节点【LeetCode】
数据结构·python·leetcode·链表