【杂记】vLLM如何指定GPU单卡/多卡离线推理

写在前面

仅作个人学习与记录用。主要记录vLLM指定GPU单卡/多卡离线推理的方法。


vLLM官方文档中Environment Variables页面有对指定GPU方法的唯一描述:

bash 复制代码
# used to control the visible devices in the distributed setting
"CUDA_VISIBLE_DEVICES":
lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),

在vLLM离线推理(Offline Inference)时,可以通过设置tensor_parallel_size = 1/2/3...,来使用默认的单卡GPU或多卡GPU来推理。但是如果想在指定的单卡/多卡GPU中运行vLLM,那么应该如何以及在哪里设置CUDA_VISIBLE_DEVICES?

一般来说,使用下面三种方法就可以了:

shell指定:

bash 复制代码
CUDA_VISIBLE_DEVICES=3  python train.py

另一种shell指定(不推荐):

bash 复制代码
export CUDA_VISIBLE_DEVICES=3  
python train.py

代码内部指定:

python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"]="3"

但是在实际执行代码过程中,可能存在失效的情况。即无论怎么修改可见的GPU编号,最后程序都是按照顺序从第0块开始使用。问题出在哪里呢?

假设一共有四卡,先使用nvidia-smi -L查看可用GPU及序号:

bash 复制代码
GPU 0: GeForce RTX XXX (UUID: xxx)
GPU 1: GeForce RTX XXX (UUID: xxx)
GPU 2: GeForce RTX XXX (UUID: xxx)
GPU 3: NVIDIA XXX (UUID: xxx)

而在代码中测试,会得到:

python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import torch
print(torch.cuda.get_device_name(0))  # 返回GPU名称,设备索引默认从0开始
print(torch.cuda.current_device())  # 返回现在使用的GPU索引

输出:
1
GeForce RTX XXX
0
python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
print(torch.cuda.get_device_name(0))  # 返回GPU名称,设备索引默认从0开始
print(torch.cuda.current_device())  # 返回现在使用的GPU索引

输出:
NVIDIA XXX
0

这是因为nvidia-smi命令中的GPU序号与代码中的GPU序号是相反的,nvidia-smi的 GPU序号默认使用PCI_BUS_ID,而py文件代码默认GPU序号遵循FASTEST_FIRST

那么可以修改上述指定方式如下:

shell指定:

bash 复制代码
CUDA_VISIBLE_DEVICES=3 export CUDA_DEVICE_ORDER="PCI_BUS_ID" python train.py

另一种shell指定(不推荐):

bash 复制代码
export CUDA_VISIBLE_DEVICES=3  
export CUDA_DEVICE_ORDER="PCI_BUS_ID"
python train.py

代码内部指定:

python 复制代码
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "3"

另外需要注意,如果你在离线推理时import了pytorch等包,最好将os.environ["CUDA_VISIBLE_DEVICES"] = "3"移到import torch等代码之前,紧随import os之后,即按照如下的方式:

python 复制代码
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="3"
import torch
......
相关推荐
格林威35 分钟前
常规环形光源在工业视觉检测上的应用
人工智能·数码相机·计算机视觉·视觉检测·工业相机·工业光源·环形光源
人间乄惊鸿客39 分钟前
python — day9
开发语言·python
FreeBuf_2 小时前
从“策略对抗”到“模型对抗”:朴智平台如何重塑金融风控新范式?
大数据·人工智能
GJGCY4 小时前
金融智能体的技术底座解析:AI Agent如何实现“认知+执行”闭环?
人工智能·经验分享·ai·金融·自动化
SteveRocket4 小时前
Python机器学习与数据分析教程之pandas
python·机器学习·数据分析
萤虫之光5 小时前
大模型技术的核心之“效率高”
ai·语言模型
koo3645 小时前
李宏毅机器学习笔记32
人工智能·笔记·机器学习
材料科学研究5 小时前
机器学习催化剂设计!
深度学习·机器学习·orr·催化剂·催化剂设计·oer
材料科学研究5 小时前
机器学习锂离子电池!预估电池!
深度学习·机器学习·锂离子电池·电池·电池健康·电池管理·电池寿命
长桥夜波5 小时前
机器学习日报04
人工智能·机器学习