【杂记】vLLM如何指定GPU单卡/多卡离线推理

写在前面

仅作个人学习与记录用。主要记录vLLM指定GPU单卡/多卡离线推理的方法。


vLLM官方文档中Environment Variables页面有对指定GPU方法的唯一描述:

bash 复制代码
# used to control the visible devices in the distributed setting
"CUDA_VISIBLE_DEVICES":
lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),

在vLLM离线推理(Offline Inference)时,可以通过设置tensor_parallel_size = 1/2/3...,来使用默认的单卡GPU或多卡GPU来推理。但是如果想在指定的单卡/多卡GPU中运行vLLM,那么应该如何以及在哪里设置CUDA_VISIBLE_DEVICES?

一般来说,使用下面三种方法就可以了:

shell指定:

bash 复制代码
CUDA_VISIBLE_DEVICES=3  python train.py

另一种shell指定(不推荐):

bash 复制代码
export CUDA_VISIBLE_DEVICES=3  
python train.py

代码内部指定:

python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"]="3"

但是在实际执行代码过程中,可能存在失效的情况。即无论怎么修改可见的GPU编号,最后程序都是按照顺序从第0块开始使用。问题出在哪里呢?

假设一共有四卡,先使用nvidia-smi -L查看可用GPU及序号:

bash 复制代码
GPU 0: GeForce RTX XXX (UUID: xxx)
GPU 1: GeForce RTX XXX (UUID: xxx)
GPU 2: GeForce RTX XXX (UUID: xxx)
GPU 3: NVIDIA XXX (UUID: xxx)

而在代码中测试,会得到:

python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import torch
print(torch.cuda.get_device_name(0))  # 返回GPU名称,设备索引默认从0开始
print(torch.cuda.current_device())  # 返回现在使用的GPU索引

输出:
1
GeForce RTX XXX
0
python 复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import torch
print(torch.cuda.get_device_name(0))  # 返回GPU名称,设备索引默认从0开始
print(torch.cuda.current_device())  # 返回现在使用的GPU索引

输出:
NVIDIA XXX
0

这是因为nvidia-smi命令中的GPU序号与代码中的GPU序号是相反的,nvidia-smi的 GPU序号默认使用PCI_BUS_ID,而py文件代码默认GPU序号遵循FASTEST_FIRST

那么可以修改上述指定方式如下:

shell指定:

bash 复制代码
CUDA_VISIBLE_DEVICES=3 export CUDA_DEVICE_ORDER="PCI_BUS_ID" python train.py

另一种shell指定(不推荐):

bash 复制代码
export CUDA_VISIBLE_DEVICES=3  
export CUDA_DEVICE_ORDER="PCI_BUS_ID"
python train.py

代码内部指定:

python 复制代码
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "3"

另外需要注意,如果你在离线推理时import了pytorch等包,最好将os.environ["CUDA_VISIBLE_DEVICES"] = "3"移到import torch等代码之前,紧随import os之后,即按照如下的方式:

python 复制代码
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="3"
import torch
......
相关推荐
简简单单做算法8 分钟前
基于LSTM深度学习网络的视频类型分类算法matlab仿真
深度学习·matlab·分类·lstm·视频类型分类
不剪发的Tony老师9 分钟前
字节跳动正式开源AI智能体开发平台Coze
人工智能·coze
love530love13 分钟前
Windows 如何更改 ModelScope 的模型下载缓存位置?
运维·人工智能·windows·python·缓存·modelscope
悦悦子a啊39 分钟前
Python之--集合
开发语言·python·编程
胡耀超1 小时前
基于Docker的GPU版本飞桨PaddleOCR部署深度指南(国内镜像)2025年7月底测试好用:从理论到实践的完整技术方案
运维·python·docker·容器·ocr·paddlepaddle·gpu
小关会打代码2 小时前
Python编程进阶知识之第四课处理数据(pandas)
python·机器学习·pandas·数据处理
WJ.Polar2 小时前
Python柱状图
python·信息可视化
一百天成为python专家3 小时前
数据可视化
开发语言·人工智能·python·机器学习·信息可视化·numpy
金井PRATHAMA3 小时前
主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时空联合细胞对NLP中的深层语义分析的积极影响和启示
人工智能·神经网络·自然语言处理
说私域3 小时前
技术赋能与营销创新:开源链动2+1模式AI智能名片S2B2C商城小程序的流量转化路径研究
人工智能·小程序·开源