如何选择聚类算法、回归算法、分类算法?

如何选择聚类算法

  • 如果数据集是高维的 ------ 谱聚类,它是子空间划分的一种。
  • 如果数据是中小规模:
    100万以内 ------ K_Means
    100万以上 ------ MiniBatchKMeans(每类抽取一部分样本聚类,精度下降,速度提高)
  • 数据集中有噪声(离群点) ------ 基于密度的带有噪声的 DBSCAN 。
  • 如果追求更高的分类准确性,选择谱聚类比K_Means准确性更好。

如何选择回归分析算法

  • 数据集本身结构简单、分布规律有明显线性关系------简单线性回归,基于最小二乘法的普通线性回归。
  • 自变量数量少或降维后得到了二维变量(包括预测变量)------直接使用散点图,发现自变量和因变量之间的相互关系,然后再选择最佳回归方法
  • 自变量间有较强共线性关系------岭回归,L2正则化,对多重共线性灵活处理的方法
  • 如果噪声较多------推荐主成分回归,通过对参与回归的主成分的合理选择,可以去掉噪声;各个主成分相互正交,解决多元回归共线性问题。
  • 高维度变量下------正则化回归方法,Lasso、Ridge、ElasticNet。降维、逐步回归
  • 可使用交叉验证做多个模型的效果对比,验证多个算法
  • 注重模型的可解释性------ 线性回归、逻辑回归、对数回归、二项式或多项式回归
  • 集成或组合方法------加权、均值等方法确定最终输出结果(一旦确认来多个方法,又不确定取舍)

如何选择分类分析算法

  • 文本文类------朴素贝叶斯
  • 训练集较小------朴素贝叶斯、支持向量机,高偏差低方差低分类算法,不容易过拟合
  • 训练集较大------基本都适用
  • 关注模型等计算时间和模型易用性------不用支持向量机和人工神经网络
  • 重视算法准确性------支持向量机、GBDT、XGBoost、Adaboost等基于Boosting等集成方法
  • 重视算法稳定性或模型鲁棒性------随机森林、组合投票模型等基于Bagging的集成方法
  • 预得到预测结果的概率信息,基于预测概率做进一步应用------逻辑回归
  • 担心离群点或数据不可分并且需要清晰的决策规则------决策树
相关推荐
程序员-King.4 小时前
day158—回溯—全排列(LeetCode-46)
算法·leetcode·深度优先·回溯·递归
KmjJgWeb4 小时前
工业零件检测与分类——基于YOLOv5的改进模型 Dysample 实现
yolo·分类·数据挖掘
月挽清风4 小时前
代码随想录第七天:
数据结构·c++·算法
小O的算法实验室4 小时前
2026年AEI SCI1区TOP,基于改进 IRRT*-D* 算法的森林火灾救援场景下直升机轨迹规划,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
小郭团队5 小时前
2_1_七段式SVPWM (经典算法)算法理论与 MATLAB 实现详解
嵌入式硬件·算法·硬件架构·arm·dsp开发
虹科网络安全5 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶
充值修改昵称5 小时前
数据结构基础:从二叉树到多叉树数据结构进阶
数据结构·python·算法
Deepoch6 小时前
Deepoc数学大模型:发动机行业的算法引擎
人工智能·算法·机器人·发动机·deepoc·发动机行业
70asunflower6 小时前
基于锚点(聚类)的LLM微调
机器学习·数据挖掘·聚类
浅念-6 小时前
C语言小知识——指针(3)
c语言·开发语言·c++·经验分享·笔记·学习·算法