神经网络归一化方法总结

在深度学习中,归一化 是提高训练效率和稳定性的关键技术。以下是几种常见的神经网络归一化方法的总结,包括其核心思想、适用场景及优缺点。

四种归一化

特性 Batch Normalization Group Normalization Layer Normalization Instance Normalization
计算维度 批次内的所有通道 单样本分组内通道 单样本所有通道 单样本每通道
依赖批量大小
应用场景 大批量训练 小批量或单样本训练 NLP 等序列任务 风格迁移等图像任务

1. Batch Normalization (BN)

核心思想

  • 在每个批次内,对每一层的激活值按通道计算均值和标准差,将其归一化到零均值和单位方差,并通过可学习的参数恢复模型表达能力。

公式

优点

  • 提高收敛速度,减少训练难度。
  • 具有一定的正则化效果,缓解过拟合。

缺点

  • 对小批量训练效果较差,因为批内统计量不稳定。
  • 对时间序列或变长输入不友好。

适用场景

  • 大批量训练任务(如图像分类、目标检测)。

2. Layer Normalization (LN)

核心思想

  • 对每一个样本的所有通道(整个特征图)进行归一化。

公式

优点

  • 不依赖批量大小,小批量训练和序列任务中表现良好。
  • 适用于变长输入。

缺点

  • 在图像任务中不如 BN 效果好。

适用场景

  • 自然语言处理(如 Transformer)。
  • 小批量或单样本任务。

3. Instance Normalization (IN)

核心思想

  • 对每个样本的每个通道独立进行归一化,仅计算空间维度的均值和标准差。

公式

优点

  • 消除样本间的风格差异。
  • 在图像风格迁移中表现优异。

缺点

  • 对模型的分布学习能力有一定限制。

适用场景

  • 图像风格迁移等需要处理单张图像的任务。

4. Group Normalization (GN)

核心思想

  • 将通道分为多个组,每组内部计算均值和标准差进行归一化。

公式

优点

  • 不依赖批量大小,适合小批量或单样本训练。
  • 在小数据集任务中表现良好。

缺点

  • 对大批量训练效率稍逊于 BN。

适用场景

  • 小批量训练任务(如目标检测、医疗图像)。

5. Weight Normalization (WN)

核心思想

  • 对每一层的权重进行归一化,分离权重的方向和尺度,以提升优化效率。

公式

优点

  • 不引入额外的运行时计算。
  • 可加速收敛。

缺点

  • 无法处理激活值的归一化。

适用场景

  • 提升优化效率的任务。

6. Layer-wise Adaptive Normalization (AdaLN)

核心思想

  • 自适应调整归一化过程,结合 IN 和 LN 的优点。

优点

  • 同时适应样本内和样本间的统计特性。
  • 在生成式任务中效果良好。

缺点

  • 计算复杂度较高。

适用场景

  • GANs 和生成式模型。

归一化方法对比

方法 计算维度 依赖批量大小 优点 缺点 应用场景
BN 批内的每个通道 加速收敛,正则化 小批量性能下降 大批量图像任务
LN 样本内所有通道 小批量效果良好 图像任务效果略差 NLP、序列任务
IN 样本内每个通道 风格迁移效果好 分布学习能力有限 图像风格迁移
GN 样本内分组的通道 适合小批量,小数据集 复杂度高于 BN 小批量检测和分类任务
WN 权重 提升优化效率 不对激活值归一化 提高收敛速度的优化任务
AdaLN 样本内和样本间 自适应效果强 计算复杂 生成式任务

归一化方法的选择应根据任务需求、批量大小和计算资源等因素综合考虑。在大批量训练任务中,BN 仍然是主流方法;而在小批量或特殊任务中,如 NLP 和生成式模型,则可以选择更适合的归一化方法(如 GNLN)。

相关推荐
一条星星鱼2 小时前
深度学习是如何收敛的?梯度下降算法原理详解
人工智能·深度学习·算法
moshumu17 小时前
局域网访问Win11下的WSL中的jupyter notebook
ide·python·深度学习·神经网络·机器学习·jupyter
图学习的小张9 小时前
Windows安装mamba全流程(全网最稳定最成功)
人工智能·windows·深度学习·语言模型
王哥儿聊AI10 小时前
告别人工出题!PromptCoT 2.0 让大模型自己造训练难题,7B 模型仅用合成数据碾压人工数据集效果!
人工智能·深度学习·算法·机器学习·软件工程
拉姆哥的小屋10 小时前
基于提示学习的多模态情感分析系统:从MULT到PromptModel的华丽升级
python·深度学习·学习
yourkin66610 小时前
人工智能 (AI) > 机器学习 (ML) > 深度学习 (DL)
人工智能·深度学习·机器学习
蒋星熠11 小时前
爬虫与自动化技术深度解析:从数据采集到智能运维的完整实战指南
运维·人工智能·爬虫·python·深度学习·机器学习·自动化
机器学习之心11 小时前
198种组合算法+优化BiGRU双向门控循环单元+SHAP分析+新数据预测+多输出!深度学习可解释分析,强烈安利,粉丝必备!
深度学习·算法·shap分析·新数据预测·优化bigru
AI人工智能+12 小时前
表格识别技术:突破传统OCR的局限,通过定位-解析-重建三步策略攻克无边框、合并单元格等视觉难题
人工智能·深度学习·ocr·表格识别
学习的学习者14 小时前
CS课程项目设计19:基于DeepFace人脸识别库的课堂签到系统
人工智能·python·深度学习·人脸识别算法