leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
测试界的世清6 分钟前
软件测试经典面试题,助你面试加分
面试·职场和发展
疯疯癫癫才自由6 分钟前
爬取Leetcode Hot 100 题单
算法·leetcode
WolfGang0073219 分钟前
代码随想录算法训练营Day33 | 322.零钱兑换、279.完全平方数、139.单词拆分、背包总结
算法
CoderYanger13 分钟前
递归、搜索与回溯-综合练习:28.不同路径Ⅲ
java·算法·leetcode·深度优先·1024程序员节
我发在否15 分钟前
Rust > 牛客OJ在线编程常见输入输出练习场
算法·rust
忆湫淮16 分钟前
ENVI 5.6 利用现场标准校准板计算地表反射率具体步骤
大数据·人工智能·算法
Ayanami_Reii19 分钟前
基础数据结构应用-一个简单的整数问题
数据结构·算法·树状数组·fenwick tree
Ayanami_Reii32 分钟前
进阶数据结构应用-一个简单的整数问题2(Fenwick-Tree 解法)
数据结构·算法·前缀和·差分·树状数组·fenwick tree
老黄编程32 分钟前
点云生成深度图的原理及算法步骤和参数详细说明
数学·算法·点云·深度图
Offer 玖玖+36 分钟前
面试中最危险的信号,不是面试官问得少,而是问得太细!
面试·职场和发展·秋招·简历·应届生