leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
2501_941147711 小时前
高并发微服务架构Spring Cloud与Dubbo在互联网优化实践经验分享
leetcode
稚辉君.MCA_P8_Java2 小时前
Gemini永久会员 Java中的四边形不等式优化
java·后端·算法
稚辉君.MCA_P8_Java3 小时前
通义 插入排序(Insertion Sort)
数据结构·后端·算法·架构·排序算法
无限进步_3 小时前
C语言动态内存的二维抽象:用malloc实现灵活的多维数组
c语言·开发语言·数据结构·git·算法·github·visual studio
Swift社区3 小时前
LeetCode 432 - 全 O(1) 的数据结构
数据结构·算法·leetcode
逝玄3 小时前
关于图灵停机问题不可判定性证明
算法·计算机科学
低客的黑调4 小时前
为你的项目选择一个适合的[垃圾收集器]
java·jvm·算法
芬加达4 小时前
leetcode34
java·数据结构·算法
资深web全栈开发4 小时前
LeetCode 1015. 可被 K 整除的最小整数 - 数学推导与鸽巢原理
算法·leetcode·职场和发展