leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
小龙报10 分钟前
《算法通关指南---C++编程篇(2)》
c语言·开发语言·数据结构·c++·程序人生·算法·学习方法
金宗汉20 分钟前
《宇宙递归拓扑学:基于自指性与拓扑流形的无限逼近模型》
大数据·人工智能·笔记·算法·观察者模式
YY_TJJ2 小时前
算法题——贪心算法
算法·贪心算法
C++ 老炮儿的技术栈2 小时前
include″″与includ<>的区别
c语言·开发语言·c++·算法·visual studio
RainbowC03 小时前
GapBuffer高效标记管理算法
android·算法
liu****3 小时前
10.queue的模拟实现
开发语言·数据结构·c++·算法
mit6.8243 小时前
10.17 枚举中间|图论
算法
小龙报3 小时前
《彻底理解C语言指针全攻略(6)-- qsort、sizeof和strlen》
c语言·开发语言·职场和发展·创业创新·学习方法·业界资讯·visual studio
让我们一起加油好吗3 小时前
【基础算法】01BFS
数据结构·c++·算法·bfs·01bfs
孤狼灬笑3 小时前
机器学习十大经典算法解析与对比
人工智能·算法·机器学习