leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
小白菜又菜1 小时前
Leetcode 3432. Count Partitions with Even Sum Difference
算法·leetcode
wuhen_n2 小时前
LeetCode -- 15. 三数之和(中等)
前端·javascript·算法·leetcode
sin_hielo3 小时前
leetcode 2483
数据结构·算法·leetcode
Xの哲學3 小时前
Linux多级时间轮:高精度定时器的艺术与科学
linux·服务器·网络·算法·边缘计算
大头流矢3 小时前
归并排序与计数排序详解
数据结构·算法·排序算法
油泼辣子多加4 小时前
【信创】算法开发适配
人工智能·深度学习·算法·机器学习
Aaron15884 小时前
AD9084和Versal RF系列具体应用案例对比分析
嵌入式硬件·算法·fpga开发·硬件架构·硬件工程·信号处理·基带工程
laocooon5238578864 小时前
插入法排序 python
开发语言·python·算法
wuhen_n5 小时前
LeetCode -- 1:两数之和(简单)
javascript·算法·leetcode·职场和发展
林shir6 小时前
Java基础1.7-数组
java·算法