leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
冠位观测者15 分钟前
【Leetcode 每日一题 - 补卡】1534. 统计好三元组
数据结构·算法·leetcode
明月看潮生20 分钟前
青少年编程与数学 02-016 Python数据结构与算法 25课题、量子算法
python·算法·青少年编程·量子计算·编程与数学
weixin_4450547227 分钟前
力扣刷题-热题100题-第35题(c++、python)
c++·python·leetcode
JNU freshman1 小时前
C. Robin Hood in Town思考与理解
算法
_x_w2 小时前
【17】数据结构之图及图的存储篇章
数据结构·python·算法·链表·排序算法·图论
anscos2 小时前
Actran声源识别方法连载(二):薄膜模态表面振动识别
人工智能·算法·仿真软件·actran
-优势在我2 小时前
LeetCode之两数之和
算法·leetcode
WaitWaitWait012 小时前
LeetCode每日一题4.17
算法·leetcode
小媛早点睡2 小时前
贪心算法day9(合并区间)
算法·贪心算法
DataFunTalk2 小时前
Foundation Agent:深度赋能AI4DATA
前端·后端·算法