leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
YuTaoShao36 分钟前
【LeetCode 每日一题】3010. 将数组分成最小总代价的子数组 I——(解法二)排序
算法·leetcode·排序算法
XH华2 小时前
备战蓝桥杯,第七章:函数与递归
职场和发展·蓝桥杯
吴维炜2 小时前
「Python算法」计费引擎系统SKILL.md
python·算法·agent·skill.md·vb coding
Σίσυφος19003 小时前
PCL Point-to-Point ICP详解
人工智能·算法
玄〤3 小时前
Java 大数据量输入输出优化方案详解:从 Scanner 到手写快读(含漫画解析)
java·开发语言·笔记·算法
weixin_395448914 小时前
main.c_cursor_0202
前端·网络·算法
senijusene4 小时前
数据结构与算法:队列与树形结构详细总结
开发语言·数据结构·算法
杜家老五4 小时前
综合实力与专业服务深度解析 2026北京网站制作公司六大优选
数据结构·算法·线性回归·启发式算法·模拟退火算法
2301_765703144 小时前
C++与自动驾驶系统
开发语言·c++·算法
Ll13045252984 小时前
Leetcode二叉树 part1
b树·算法·leetcode