leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
CoderYanger8 分钟前
C.滑动窗口-求子数组个数-越短越合法——3258. 统计满足 K 约束的子字符串数量 I
java·开发语言·算法·leetcode·1024程序员节
2301_8079973814 分钟前
代码随想录-day56
算法
AI科技星21 分钟前
时空运动的几何约束:张祥前统一场论中圆柱螺旋运动光速不变性的严格数学证明与物理诠释
服务器·数据结构·人工智能·python·科技·算法·生活
杰克尼27 分钟前
蓝桥云课-13. 定时任务
java·开发语言·算法
一个不知名程序员www40 分钟前
算法学习入门---list与算法竞赛中的链表题(C++)
c++·算法
CoderYanger42 分钟前
动态规划算法-路径问题:9.最小路径和
开发语言·算法·leetcode·动态规划·1024程序员节
老欧学视觉43 分钟前
0012机器学习KNN算法
人工智能·算法·机器学习
月明长歌1 小时前
【码道初阶】一道经典的简单题:Boyer-Moore 多数投票算法|多数元素问题(LeetCode 169)
算法·leetcode·职场和发展
CoderYanger1 小时前
动态规划算法-路径问题:7.礼物的最大价值
开发语言·算法·leetcode·动态规划·1024程序员节
蕓晨1 小时前
钱币找零问题-贪心算法解析
c++·算法·贪心算法