leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
闲看云起9 小时前
LeetCode-day5:三数之和
算法·leetcode·职场和发展
Xの哲學9 小时前
Linux 文件系统一致性: 从崩溃恢复到 Journaling 机制
linux·服务器·算法·架构·边缘计算
wtmReiner9 小时前
山东大学数值计算2026.1大三上期末考试回忆版
笔记·算法
黛色正浓9 小时前
leetCode-热题100-滑动窗口合集(JavaScript)
javascript·算法·leetcode
漫随流水10 小时前
leetcode算法(145.二叉树的后序遍历)
数据结构·算法·leetcode·二叉树
Tony_yitao10 小时前
22.华为OD机试真题:数组拼接(Java实现,100分通关)
java·算法·华为od·algorithm
2501_9418752810 小时前
在东京复杂分布式系统中构建统一可观测性平台的工程设计实践与演进经验总结
c++·算法·github
sonadorje10 小时前
梯度下降法的迭代步骤
算法·机器学习
漫随流水10 小时前
leetcode算法(94.二叉树的中序遍历)
数据结构·算法·leetcode·二叉树
范纹杉想快点毕业10 小时前
嵌入式通信核心架构:从状态机、环形队列到多协议融合
linux·运维·c语言·算法·设计模式