leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
骑着猪去兜风.1 小时前
线段树(二)
数据结构·算法
fengfuyao9853 小时前
竞争性自适应重加权算法(CARS)的MATLAB实现
算法
散峰而望3 小时前
C++数组(二)(算法竞赛)
开发语言·c++·算法·github
leoufung3 小时前
LeetCode 92 反转链表 II 全流程详解
算法·leetcode·链表
wyhwust3 小时前
交换排序法&冒泡排序法& 选择排序法&插入排序的算法步骤
数据结构·算法·排序算法
利刃大大3 小时前
【动态规划:背包问题】完全平方数
c++·算法·动态规划·背包问题·完全背包
wyhwust4 小时前
数组----插入一个数到有序数列中
java·数据结构·算法
im_AMBER4 小时前
Leetcode 59 二分搜索
数据结构·笔记·学习·算法·leetcode
gihigo19984 小时前
基于MATLAB的IEEE 14节点系统牛顿-拉夫逊潮流算法实现
开发语言·算法·matlab
leoufung4 小时前
LeetCode 61. 旋转链表(Rotate List)题解与思路详解
leetcode·链表·list