leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
Frostnova丶32 分钟前
LeetCode 190.颠倒二进制位
java·算法·leetcode
骇城迷影1 小时前
代码随想录:链表篇
数据结构·算法·链表
专注前端30年2 小时前
智能物流路径规划系统:核心算法实战详解
算法
json{shen:"jing"}2 小时前
字符串中的第一个唯一字符
算法·leetcode·职场和发展
追随者永远是胜利者3 小时前
(LeetCode-Hot100)15. 三数之和
java·算法·leetcode·职场和发展·go
程序员酥皮蛋3 小时前
hot 100 第二十七题 27.合并两个有序链表
数据结构·leetcode·链表
BlockWay4 小时前
西甲赛程搬进平台:WEEX以竞猜开启区域合作落地
大数据·人工智能·算法·安全
马士兵教育4 小时前
程序员简历如何编写才能凸显出差异化,才能拿到更多面试机会?
开发语言·后端·面试·职场和发展·架构
hqyjzsb5 小时前
企业培训ROI深度分析:如何将CAIE认证的显性与隐性成本纳入投资回报率模型
人工智能·考研·职场和发展·创业创新·学习方法·业界资讯·改行学it
im_AMBER5 小时前
Leetcode 121 翻转二叉树 | 二叉树中的最大路径和
数据结构·学习·算法·leetcode