leetcode - 3244. Shortest Distance After Road Addition Queries II

Description

You are given an integer n and a 2D integer array queries.

There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.

queries[i] = [ui, vi] represents the addition of a new unidirectional road from city ui to city vi. After each query, you need to find the length of the shortest path from city 0 to city n - 1.

There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].

Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.

Example 1:

复制代码
Input: n = 5, queries = [[2,4],[0,2],[0,4]]

Output: [3,2,1]

Explanation:
复制代码
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
复制代码
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.

Example 2:

复制代码
Input: n = 4, queries = [[0,3],[0,2]]

Output: [1,1]

Explanation:
复制代码
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
复制代码
After the addition of the road from 0 to 2, the length of the shortest path remains 1.

Solution

Similar to 3243. Shortest Distance After Road Addition Queries I, but this time with more data and an additional rule: no overlapped queries.

So we have a tricky way to solve this, because we don't have overlapped queries, so we could just drop the nodes between each query. And the length of the graph would be our answer.

Here we use a hash map to denote the graph.

Time complexity: o ( n + q ) o(n+q) o(n+q)

Space complexity: o ( n ) o(n) o(n)

Code

python3 复制代码
class Solution:
    def shortestDistanceAfterQueries(self, n: int, queries: List[List[int]]) -> List[int]:
        neighbors = {i: i + 1 for i in range(n - 1)}
        res = []
        for each_query in queries:
            start_city, end_city = each_query
            # if start_city is in the graph and the new query gives us a shorter way
            if start_city in neighbors and neighbors[start_city] < end_city:
                cur_city = neighbors[start_city]
                while cur_city < end_city:
                    cur_city = neighbors.pop(cur_city)
                neighbors[start_city] = end_city
            res.append(len(neighbors))
        return res
相关推荐
源代码•宸13 分钟前
分布式缓存-GO(分布式算法之一致性哈希、缓存对外服务化)
开发语言·经验分享·分布式·后端·算法·缓存·golang
yongui478341 小时前
MATLAB的指纹识别系统实现
算法
高山上有一只小老虎1 小时前
翻之矩阵中的行
java·算法
jghhh011 小时前
RINEX文件进行卫星导航解算
算法
爱思德学术1 小时前
中国计算机学会(CCF)推荐学术会议-A(计算机科学理论):LICS 2026
算法·计算机理论·计算机逻辑
CVHub1 小时前
多模态图文训推一体化平台 X-AnyLabeling 3.0 版本正式发布!首次支持远程模型推理服务,并新增 Qwen3-VL 等多款主流模型及诸多功能特性,等
算法
hoiii1872 小时前
MATLAB实现Canny边缘检测算法
算法·计算机视觉·matlab
qq_430855882 小时前
线代第二章矩阵第四课:方阵的幂
算法·机器学习·矩阵
roman_日积跬步-终至千里2 小时前
【计算机设计与算法-习题2】动态规划应用:矩阵乘法与钢条切割问题
算法·矩阵·动态规划
kupeThinkPoem2 小时前
计算机算法导论第三版算法视频讲解
数据结构·算法