思维难度较大 贪心优化背包 [USACO22DEC] Bribing Friends G

[USACO22DEC] Bribing Friends G

显然背包可做, 只不过时间复杂度预计 O ( n 4 ) O(n^4) O(n4), 严重超时. 但是考场上写出暴力背包已经可以拿 75 分了, Oier 狂喜. 但可惜, 我打 Acm .

于是我们不妨想想怎么优化.

如果我们已经确定了选哪几位朋友, 那么把冰淇凌给需求冰淇凌最少的那头牛就行. 于是我们不妨按照 x x x 从大到小排序. 首先设 f ( i , j ) f(i,j) f(i,j) 表示前 i i i 项当我们用了 j j j 元后的好感度总和, 显然有

f ( i , j ) = { f ( i − 1 , j ) j < c min ⁡ { f ( i − 1 , j ) , f ( i − 1 , j − c ) + p } c ≤ j ≤ B f(i,j)=\begin{cases}f(i-1,j)\ \ \ \ \ j<c\\ \min\left\{f(i-1,j),f(i-1,j-c)+p\right\}\ \ \ \ c\le j\le B\end{cases} f(i,j)={f(i−1,j) j<cmin{f(i−1,j),f(i−1,j−c)+p} c≤j≤B

cpp 复制代码
for(int i=1;i<=n;P(i)){
	for(int j=0;j<cow[i].c;P(j))f[i][j]=f[i-1][j];
	for(int j=cow[i].c;j<=A;P(j))f[i][j]=std::max(f[i-1][j],f[i-1][j-cow[i].c]+cow[i].p);
}

我们不妨再设 f 1 ( i , j ) f_1(i,j) f1(i,j) 为前 i i i 项我们用 j j j 个甜筒后可获取的最大受欢迎度. 显然我们最多可以减少 r e d u c e = min ⁡ { c , j / x } reduce=\min\{c,j/x\} reduce=min{c,j/x} 元, 同样我们剩下 r e s t = j − r e d u c e ∗ x rest=j-reduce*x rest=j−reduce∗x 个冰淇淋. 显然当我们减少的钱够贿赂一头牛的钱后显然我们不需要给这头牛任何钱了, 我们可以拿剩余的冰淇淋去给其它奶牛:

f 1 ( i , j ) = max ⁡ { f 1 ( i − 1 , j ) , f 1 ( i − 1 , r e s t ) + p } f_1(i,j)=\max\left\{f_1(i-1,j),f_1(i-1,rest)+p\right\} f1(i,j)=max{f1(i−1,j),f1(i−1,rest)+p}

否则说明我们不能完全通过冰淇淋收买这头奶牛, 还是要给钱, 并且由于我们的奶牛 x x x 是降序, 这也说明之前的牛并不能被收买, 我们预处理的 f f f 就在这里派上用场了:

f 1 ( i , j ) = max ⁡ { f 1 ( i − 1 , j ) , f ( i − 1 , A − ( c − r e d u c e ) ) + p } f_1(i,j)=\max\left\{f_1(i-1,j),f\left(i-1,A-(c-reduce)\right)+p\right\} f1(i,j)=max{f1(i−1,j),f(i−1,A−(c−reduce))+p}

cpp 复制代码
for(int i=1,reduce,rest;i<=n;P(i)){
	for(int j=0;j<=B;P(j)){
		reduce=std::min(cow[i].c,j/cow[i].x);
		rest=j-reduce*cow[i].x;
		if(reduce^cow[i].c)f1[i][j]=std::max(f1[i-1][j],f[i-1][A-(cow[i].c-reduce)]+cow[i].p);
		else f1[i][j]=std::max(f1[i-1][j],f1[i-1][rest]+cow[i].p);
		ans=std::max(ans,f1[i][j]);
	}
}

总代码:

cpp 复制代码
#include<algorithm>
#include<iostream>
#define P(A) A=-~A
typedef long long LL;
#define NUMBER1 2000
int n,A,B,f[NUMBER1+5][NUMBER1+5],f1[NUMBER1+5][NUMBER1+5],ans(0);
struct COW{
	int p,c,x;
	bool operator<(const COW &A)const{return x>A.x;}
}cow[NUMBER1+5];
signed main(){
	std::cin.tie(nullptr)->std::ios::sync_with_stdio(false);
	std::cout.tie(nullptr);
	std::cin>>n>>A>>B;
	for(int i=1;i<=n;P(i))std::cin>>cow[i].p>>cow[i].c>>cow[i].x;
	std::sort(cow+1,cow+1+n);
	for(int i=1,reduce,rest;i<=n;P(i)){
		for(int j=0;j<cow[i].c;P(j))f[i][j]=f[i-1][j];
		for(int j=cow[i].c;j<=A;P(j))f[i][j]=std::max(f[i-1][j],f[i-1][j-cow[i].c]+cow[i].p);
		for(int j=0;j<=B;P(j)){
			reduce=std::min(cow[i].c,j/cow[i].x);
			rest=j-reduce*cow[i].x;
			if(reduce^cow[i].c)f1[i][j]=std::max(f1[i-1][j],f[i-1][A-(cow[i].c-reduce)]+cow[i].p);
			else f1[i][j]=std::max(f1[i-1][j],f1[i-1][rest]+cow[i].p);
			ans=std::max(ans,f1[i][j]);
		}
	}
	std::cout<<ans;
	return 0;
}
相关推荐
油泼辣子多加5 小时前
【信创】算法开发适配
人工智能·深度学习·算法·机器学习
一路往蓝-Anbo5 小时前
【第20期】延时的艺术:HAL_Delay vs vTaskDelay
c语言·数据结构·stm32·单片机·嵌入式硬件
Aaron15886 小时前
AD9084和Versal RF系列具体应用案例对比分析
嵌入式硬件·算法·fpga开发·硬件架构·硬件工程·信号处理·基带工程
laocooon5238578866 小时前
插入法排序 python
开发语言·python·算法
wuhen_n6 小时前
LeetCode -- 1:两数之和(简单)
javascript·算法·leetcode·职场和发展
林shir8 小时前
Java基础1.7-数组
java·算法
Jeremy爱编码8 小时前
leetcode课程表
算法·leetcode·职场和发展
甄心爱学习8 小时前
SVD求解最小二乘(手写推导)
线性代数·算法·svd
努力学算法的蒟蒻8 小时前
day46(12.27)——leetcode面试经典150
算法·leetcode·面试
Blockbuater_drug9 小时前
InChIKey: 分子的“化学身份证”,从哈希原理到全球监管合规(2025)
算法·哈希算法·inchikey·rdkit·分子表达·化学信息学