VTK中矩阵vtkMatrix4x4类的介绍和使用

1、矩阵-齐次坐标介绍

常见的点一般是Pt(X,Y,Z),相当于一个1×3矩阵,而矩阵相乘的话一般是第一个矩阵的列数要等于第二个矩阵的行数。此处需要引入齐次坐标的概念:从广义上讲,齐次坐标就是用n+1维向量表示n 维向量,即将n维空间的点用 n+1维坐标表示。例如,一般笛卡尔坐标系中的二维点向量[x y]可用齐次坐标表示为[Hx Hx H],其中最后一维坐标是一个标量,称为比例因子。利用齐次坐标可以将平移、旋转、比例、投影等几何变换统一到矩阵的乘法上来,为图形变换提供方便。

该矩阵在右手坐标系中定义,其中左上角部分产生比例、对称、错切和旋转变换,右上角部分产生平移变换;左下角部分产生透视变换;右下角部分产生全比例变换。

2、矩阵旋转

有兴趣可以将上述三个旋转矩阵按照不同的顺序进行相乘,得到的结果也是不一样的,例如:

1)先旋转x轴再旋转y轴再旋转z轴;

2)先旋转y轴再旋转x轴再旋转z轴;

3)先旋转z轴再旋转y轴再旋转x轴;

3、VTK矩阵-vtkMatrix4x4类

3.1 vtkMatrix4x4初始化
c 复制代码
matrix1:
-0.013 -0.986 0.165 -133
-0.017 0.166 0.986 -35
-1 0.01 -0.02 40
0 0 0 1
cpp 复制代码
	vtkMatrix4x4* matrix1 = vtkMatrix4x4::New();
	matrix1->Identity();
	matrix1->SetElement(0, 0, -0.013);
	matrix1->SetElement(0, 1, -0.986);
	matrix1->SetElement(0, 2, 0.165);
	matrix1->SetElement(0, 3, -133);

	matrix1->SetElement(1, 0, -0.017);
	matrix1->SetElement(1, 1, 0.166);
	matrix1->SetElement(1, 2, 0.986);
	matrix1->SetElement(1, 3, -35);

	matrix1->SetElement(2, 0, -1.0);
	matrix1->SetElement(2, 1, 0.01);
	matrix1->SetElement(2, 2, -0.02);
	matrix1->SetElement(2, 3, 40);
3.2 vtkMatrix4x4相乘

下面两个矩阵的结果是不一样的,也就是常说的矩阵乘法左乘和右乘不一样。

cpp 复制代码
	vtkMatrix4x4::Multiply4x4(matrix1, matrix2, matrix3);
	vtkMatrix4x4::Multiply4x4(matrix2, matrix1, matrix4);

下面是完整的结果和代码:

cpp 复制代码
#include <iostream>
#include <vtkMatrix4x4.h>

int main()
{
    vtkMatrix4x4* matrix1 = vtkMatrix4x4::New();
	matrix1->Identity();
	matrix1->SetElement(0, 0, -0.013);
	matrix1->SetElement(0, 1, -0.986);
	matrix1->SetElement(0, 2, 0.165);
	matrix1->SetElement(0, 3, -133);

	matrix1->SetElement(1, 0, -0.017);
	matrix1->SetElement(1, 1, 0.166);
	matrix1->SetElement(1, 2, 0.986);
	matrix1->SetElement(1, 3, -35);

	matrix1->SetElement(2, 0, -1.0);
	matrix1->SetElement(2, 1, 0.01);
	matrix1->SetElement(2, 2, -0.02);
	matrix1->SetElement(2, 3, 40);

	vtkMatrix4x4* matrix2 = vtkMatrix4x4::New();
	matrix2->Identity();
	matrix2->SetElement(0, 3, -140);
	matrix2->SetElement(1, 3, -140);
	matrix2->SetElement(2, 3, -143);

	vtkMatrix4x4* matrix3 = vtkMatrix4x4::New();
	matrix3->Identity();
	vtkMatrix4x4* matrix4 = vtkMatrix4x4::New();
	matrix4->Identity();

	vtkMatrix4x4::Multiply4x4(matrix1, matrix2, matrix3);
	vtkMatrix4x4::Multiply4x4(matrix2, matrix1, matrix4);
	// 打印结果矩阵以验证

	std::cout << "matrix1: " << std::endl;
	for (int i = 0; i < 4; ++i)
	{
		for (int j = 0; j < 4; ++j)
		{
			std::cout << matrix1->GetElement(i, j) << " ";
		}
		std::cout << std::endl;
	}

	std::cout << "matrix2: " << std::endl;
	for (int i = 0; i < 4; ++i)
	{
		for (int j = 0; j < 4; ++j)
		{
			std::cout << matrix2->GetElement(i, j) << " ";
		}
		std::cout << std::endl;
	}

	std::cout << std::endl;

	std::cout << "matrix1 * matrix2: " << std::endl;
	for (int i = 0; i < 4; ++i) 
	{
		for (int j = 0; j < 4; ++j) 
		{
			std::cout << matrix3->GetElement(i, j) << " ";
		}
		std::cout << std::endl;
	}

	std::cout << std::endl;

	std::cout << "matrix2 * matrix1: " << std::endl;
	for (int i = 0; i < 4; ++i)
	{
		for (int j = 0; j < 4; ++j)
		{
			std::cout << matrix4->GetElement(i, j) << " ";
		}
		std::cout << std::endl;
	}

	// 释放内存
	matrix1->Delete();
	matrix2->Delete();
	matrix3->Delete();
	matrix4->Delete();

	return 1;
}
相关推荐
Psycho_MrZhang5 小时前
高等数学基础(矩阵基本操作转置和逆矩阵)
线性代数·矩阵
狐凄6 小时前
Python实例题:Python计算线性代数
开发语言·python·线性代数
天宫风子6 小时前
线性代数小述(二之前)
线性代数
Bruce_Liuxiaowei17 小时前
文件上传漏洞深度解析:检测与绕过技术矩阵
安全·矩阵·文件上传漏洞
天宫风子18 小时前
线性代数小述(一)
线性代数·算法·矩阵·抽象代数
老歌老听老掉牙1 天前
使用 SymPy 进行向量和矩阵的高级操作
python·线性代数·算法·矩阵·sympy
sz66cm1 天前
LeetCode刷题 -- 542. 01矩阵 基于 DFS 更新优化的多源最短路径实现
leetcode·矩阵·深度优先
fen_fen1 天前
学习笔记(25):线性代数,矩阵-矩阵乘法原理
笔记·学习·线性代数
luofeiju1 天前
矩阵QR分解
线性代数·算法
闻缺陷则喜何志丹1 天前
【分治法 容斥原理 矩阵快速幂】P6692 出生点|普及+
c++·线性代数·数学·洛谷·容斥原理·分治法·矩阵快速幂