克服大规模语言模型限制,构建新的应用方法——LangChain

大模型

大模型的出现和落地开启了人工智能(AI)新一轮的信息技术革命,改变了人们的生 活方式、工作方式和思维方式。大模型的落地需要数据、算力和算法三大要素。经过几 年发展,大模型的数据集(包括多模态数据集)制作已经形成了规约,Meta、Google和百 度等人工智能公司都有自己的一套数据集标准制作流程。算力方面主要依托GPU、TPU 等硬件资源进行集群计算(即并行计算)。在算法方面,主要以Transformer架构为主流框 架,出现了 OpenAI 的 GPT 系列大模型、Meta 的 Llama 系列大模型以及清华大学的 ChatGLM 系列大模型。目前虽然已经有几千个甚至更多的大模型。

在这种背景下,在基础大模型基础上形成了微调和提示工程等新的技术范式。同时也出现了大模型应用落地的软件产品,如LangChain、Ollama、Chatbox、LM Studio、 AnythingLLM、LocalAI 和 MaxKB 等,主要用于大模型微调、部署、管理和应用服务 开发。这些产品各有特色,要根据自己的业务场景、业务需求和特色选择。

LangChain 由Harrison Chase 于2022 年创建,是一个开源Python 框架,用于构建大规模语言模型驱动的应用程序。它为开发人员提供模块化、易于使用的组件,用于将语言模型与外部数据源和服务连接起来。LangChain提供了一个完整的生态系统,为开发者带来了一系列核心模块和工具。

大规模语言模型的局限性

大规模语言模型已成为强大的工具,但其功能也有局限性。了解这些限制有助于有 效地设计和部署大规模语言模型。大规模语言模型面临以下几个问题。

● 知识过时:大规模语言模型完全依赖于训练数据,而这些数据可能已经过时。 大规模语言模型缺乏获取实时信息的途径,在回答有关时事的问题时会很吃力。 例如,向大规模语言模型询问最近的一则新闻会得到一个不知情的响应。

● 有限行动:大规模语言模型无法在现实世界中执行行动。它们不能搜索网络、 访问数据库或进行计算。这就限制了它们在需要与外部数据交互的任务中的作 用。试想一下,大规模语言模型在讨论金融时------它可以解释概念,但无法检 索实时股票数据来分析当前趋势。

● 偏见与公平:大规模语言模型可能会从训练数据中继承偏见。这些偏见可能是 宗教性的、意识形态的或政治性的,从而导致歧视性的输出。精心设计和监控 对于降低这些风险至关重要。例如,微软的Tay聊天机器人在2016年推出不久 后就下线了,原因是有毒性互动导致的攻击性推文。

● 成本和速度:由于对计算的要求,训练和运行大规模语言模型的成本可能很高。 此外,文本生成速度也会因模型大小和复杂程度而异。对于生产部署而言,仔 细考虑这些因素至关重要。

● 逻辑推理和数学:虽然大规模语言模型不断取得进步,但通常难以胜任复杂推 理或数学模型的任务。它们可能无法将多个事实结合起来,或进行以前从未遇 到过的计算。例如,大规模语言模型可能知道水果和水的密度,但却无法确定 水果是否会浮起来(这是一个多步骤的推理过程)。

如何减少大规模语言模型的局限性

大规模语言模型在推理、获取实时信息和避免偏见等方面可能存在不足。为了弥补 这些不足,可以采用循序渐进的方法,以下技术可以减少其局限性。

  1. 提示工程和微调:首先要精心设计提示(问题或指示),引导大规模语言模型实现 预期结果。这有助于大规模语言模型更好地理解任务和上下文。此外,在特定数据集上 进行微调可以进一步提高特定应用的性能。

  2. 自我任务提示:这种方法鼓励大规模语言模型将复杂的问题分解成更小、更容 易处理的步骤。通过向自己提出明确的问题,大规模语言模型可以找出相关信息,更有 条理地解决问题。

  3. 连接外部数据:大规模语言模型缺乏实时知识,可以将其与数据库或Web 搜索 API 等外部数据源集成。这样,大规模语言模型就能获取当前信息,提高响应的准确性。

  4. 过滤和监控:尽管采取了预防措施,但偏见和事实错误仍有可能漏网。实施过 滤器,如屏蔽列表、敏感度分类器和禁用词过滤器,可在输出之前捕捉到不适当或不准 确的输出。人工监控对于识别和解决新出现的问题也至关重要。

  5. 人工智能的宪法原则:将道德因素纳入开发过程。这包括将公平性和透明度纳 入大规模语言模型本身,使其行为符合人类价值观。 通过将这些策略结合起来,可以将大规模语言模型从随机鹦鹉转变为推理引擎,使 其能够进行更有意义的交互并输出负责任的结果。

像LangChain这样的框架通过提供一 种结构化的方法,将提示、数据源和过滤器结合起来,有效地使用大规模语言模型,从 而简化了这一过程。

《LangChain大模型应用开发》

本书围绕大模型、生成式人工智能、LangChain等主题,以理论、案例和近几年的 技术前沿为主线展开,以代码实现为途径,适合大模型应用开发、人工智能和大数据等 领域的学者和工程师阅读,也可以作为非计算机背景人员作为入门大模型应用实战的 读物。无论是初学者还是经验丰富的开发人员,对于任何想要充分利用大规模语言模型并 在大规模语言模型和LangChain方面保持领先的人来说,这本书都将是宝贵的资源。

大规模语言模型可以生成令人信服的语言,但在推理、知识和使用工具方面却有很 大的局限性。LangChain框架简化了由大规模语言模型驱动的复杂应用程 序的构建,从而减少缺陷。链允许对大规模语言模型、数据库、API等进行排序调用, 以完成多步骤工作流。智能体可利用链根据观察结果采取行动,以管理动态应用程序。 记忆会在执行过程中持久保存信息,以保持状态。这些概念通过整合外部数据、操作和 上下文,使开发人员能够克服单个大规模语言模型的局限性。换句话说,LangChain将 复杂的编排工作简化为可定制的构建模块。

LangChain 生态系统还包括用于收集反馈的 LangSmith、用于构建复杂有状 态应用程序的LangGraph以及用于简化API创建的LangServe,它们都具有旨在优化性 能、可扩展性和用户参与度的独特功能。此外,TruLens、Twitter和Google Search等重 要的第三方集成也丰富了该框架的功能,使大规模语言模型的应用更加广泛。

相关推荐
蚝油菜花5 分钟前
DeepSite:基于DeepSeek的开源AI前端开发神器,一键生成游戏/网页代码
人工智能·开源
蚝油菜花5 分钟前
PaperBench:OpenAI开源AI智能体评测基准,8316节点精准考核复现能力
人工智能·开源
蚝油菜花8 分钟前
DreamActor-M1:字节跳动推出AI动画黑科技,静态照片秒变生动视频
人工智能·开源
MPCTHU9 分钟前
预测分析(三):基于机器学习的分类预测
人工智能·机器学习·分类
jndingxin16 分钟前
OpenCV 图形API(11)对图像进行掩码操作的函数mask()
人工智能·opencv·计算机视觉
Scc_hy25 分钟前
强化学习_Paper_1988_Learning to predict by the methods of temporal differences
人工智能·深度学习·算法
袁煦丞28 分钟前
【亲测】1.5万搞定DeepSeek满血版!本地部署避坑指南+内网穿透黑科技揭秘
人工智能·程序员·远程工作
大模型真好玩30 分钟前
理论+代码一文带你深入浅出MCP:人工智能大模型与外部世界交互的革命性突破
人工智能·python·mcp
_一条咸鱼_32 分钟前
LangChain 入门到精通
机器学习