Representation + IL: Policy Contrastive Imitation Learning

ICML 2023
paper

采用对比学习对状态动作联合表征,并基于表征函数实现奖励函数重构

method

对比学习目标函数如下:

问题:最小化该损失函数,第一项少了一个负号

得到表征函数 Φ \Phi Φ,通过计算真是样本与专家样本在表征后的余弦相似度,作为奖励函数(表征越相似,奖励越大):

实践中,由于 Φ 频繁更新,计算期望值可能会很耗时。因此使用随机专家样本来计算奖励。最后基于DrQ-v2算法训练策略

结果

基于表征的奖励函数对比GAIL:

相关推荐
海边夕阳20065 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
xlq223225 小时前
22.多态(上)
开发语言·c++·算法
666HZ6666 小时前
C语言——高精度加法
c语言·开发语言·算法
Wise玩转AI6 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
sweet丶6 小时前
iOS MMKV原理整理总结:比UserDefaults快100倍的存储方案是如何炼成的?
算法·架构
youcans_6 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭6 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT6 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"6 小时前
专项智能练习(课程类型)
人工智能