Halcon中histo_2dim(Operator)算子原理及应用详解

在Halcon中,histo_2dim算子是一个用于计算双通道灰度值图像的直方图的工具。以下是对该算子的原理及应用的详细解释:
一、原理

histo_2dim算子的函数原型为:histo_2dim(Regions, ImageCol, ImageRow : Histo2Dim : : )。

复制代码
输入参数:
    Regions:输入区域,在此区域内计算直方图。这些区域通常是从图像中分割出来的一部分或多部分,即感兴趣区域(ROI,Regions Of Interest)。
    ImageCol:多通道图像的第一个通道,其数据将被用于计算直方图的第一维。
    ImageRow:多通道图像的第二个通道,其数据将被用于计算直方图的第二维。

输出参数:
    Histo2Dim:计算得出的二维直方图。输出是一个整数类型的图像,其中的每个像素值代表了对应灰度级组合出现的频率。

具体来说,histo_2dim算子计算的是输入区域Regions内,由ImageCol和ImageRow两个通道构成的二维特征空间的直方图。在这个二维特征空间中,ImageCol的灰度值被解释为行索引,ImageRow的灰度值被解释为列索引。输出图像Histo2Dim中的每个点P(g1,g2)的灰度值表示(g1,g2)灰度值组合的频率,其中g1表示行索引,g2表示列索引。

二、应用

histo_2dim算子在图像处理领域有着广泛的应用,特别是在图像分割和特征提取方面。以下是一个具体的应用示例:

复制代码
读取图像:使用read_image算子读取一幅彩色图像。
分解图像:使用decompose3算子将彩色图像分解为红、绿、蓝三个单通道图像。
绘制感兴趣区域:在图像上绘制一个感兴趣区域(ROI)。
计算二维直方图:使用histo_2dim算子计算ROI区域内,以红色通道为ImageCol,以蓝色通道为ImageRow的二维直方图。
后续处理:根据计算得到的二维直方图,可以进行进一步的图像分割、特征提取等处理。例如,可以使用class_2dim_sup算子根据二维特征空间对图像进行分割。

三、注意事项

复制代码
1、在使用histo_2dim算子时,需要确保输入图像的两个通道具有相同的尺寸和数据类型。
2、输出的二维直方图图像的大小取决于输入图像的灰度级范围。例如,对于byte类型的图像,输出图像的宽高通常为256。
3、在进行图像分割等后续处理时,需要根据具体的应用场景选择合适的参数和算法。

综上所述,histo_2dim算子是Halcon中一个非常有用的工具,它可以帮助我们计算双通道灰度值图像的直方图,进而进行图像分割和特征提取等处理。

四、使用示例

javascript 复制代码
Interactive := 1
read_image (Image, 'ic')
dev_close_window ()
get_image_size (Image, Width, Height)
dev_open_window (0, 0, Width, Height, 'white', WindowID)
* Convert a three-channel image into three images
decompose3 (Image, Red, Green, Blue)
dev_display (Red)
dev_set_color ('red')
if (Interactive)
    draw_region (Pattern, WindowID)
else
    gen_rectangle1 (Pattern, 362, 276, 371, 298)
endif
* Calculate the histogram of two-channel gray value images
histo_2dim (Pattern, Red, Blue, Histo2Dim)
threshold (Histo2Dim, Features, 1, 255)
* Close a region with a circular structuring element
closing_circle (Features, FeaturesClosed, 11.5)
dev_set_draw ('fill')
dev_set_part (0, 0, 511, 511)
dev_display (Red)
class_2dim_sup (Red, Blue, FeaturesClosed, RegionClass2Dim)
closing_rectangle1 (RegionClass2Dim, RegionClosing, 11, 11)
connection (RegionClosing, ConnectedRegions)
smallest_rectangle2 (ConnectedRegions, Row, Column, Phi, Length1, Length2)
gen_rectangle2 (Rectangles, Row, Column, Phi, Length1, Length2)
dev_display (Image)
dev_display (Rectangles)

相关推荐
子夜江寒11 小时前
基于 OpenCV 的图像形态学与边缘检测
python·opencv·计算机视觉
逑之11 小时前
C语言笔记10:sizeof和strlen,指针与数组
c语言·笔记·算法
求梦82011 小时前
【力扣hot100题】旋转图像(15)
算法·leetcode·职场和发展
工藤学编程12 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅13 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技15 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
C雨后彩虹15 小时前
任务最优调度
java·数据结构·算法·华为·面试
Dxy123931021617 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧17 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)17 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别