Halcon中histo_2dim(Operator)算子原理及应用详解

在Halcon中,histo_2dim算子是一个用于计算双通道灰度值图像的直方图的工具。以下是对该算子的原理及应用的详细解释:
一、原理

histo_2dim算子的函数原型为:histo_2dim(Regions, ImageCol, ImageRow : Histo2Dim : : )。

复制代码
输入参数:
    Regions:输入区域,在此区域内计算直方图。这些区域通常是从图像中分割出来的一部分或多部分,即感兴趣区域(ROI,Regions Of Interest)。
    ImageCol:多通道图像的第一个通道,其数据将被用于计算直方图的第一维。
    ImageRow:多通道图像的第二个通道,其数据将被用于计算直方图的第二维。

输出参数:
    Histo2Dim:计算得出的二维直方图。输出是一个整数类型的图像,其中的每个像素值代表了对应灰度级组合出现的频率。

具体来说,histo_2dim算子计算的是输入区域Regions内,由ImageCol和ImageRow两个通道构成的二维特征空间的直方图。在这个二维特征空间中,ImageCol的灰度值被解释为行索引,ImageRow的灰度值被解释为列索引。输出图像Histo2Dim中的每个点P(g1,g2)的灰度值表示(g1,g2)灰度值组合的频率,其中g1表示行索引,g2表示列索引。

二、应用

histo_2dim算子在图像处理领域有着广泛的应用,特别是在图像分割和特征提取方面。以下是一个具体的应用示例:

复制代码
读取图像:使用read_image算子读取一幅彩色图像。
分解图像:使用decompose3算子将彩色图像分解为红、绿、蓝三个单通道图像。
绘制感兴趣区域:在图像上绘制一个感兴趣区域(ROI)。
计算二维直方图:使用histo_2dim算子计算ROI区域内,以红色通道为ImageCol,以蓝色通道为ImageRow的二维直方图。
后续处理:根据计算得到的二维直方图,可以进行进一步的图像分割、特征提取等处理。例如,可以使用class_2dim_sup算子根据二维特征空间对图像进行分割。

三、注意事项

复制代码
1、在使用histo_2dim算子时,需要确保输入图像的两个通道具有相同的尺寸和数据类型。
2、输出的二维直方图图像的大小取决于输入图像的灰度级范围。例如,对于byte类型的图像,输出图像的宽高通常为256。
3、在进行图像分割等后续处理时,需要根据具体的应用场景选择合适的参数和算法。

综上所述,histo_2dim算子是Halcon中一个非常有用的工具,它可以帮助我们计算双通道灰度值图像的直方图,进而进行图像分割和特征提取等处理。

四、使用示例

javascript 复制代码
Interactive := 1
read_image (Image, 'ic')
dev_close_window ()
get_image_size (Image, Width, Height)
dev_open_window (0, 0, Width, Height, 'white', WindowID)
* Convert a three-channel image into three images
decompose3 (Image, Red, Green, Blue)
dev_display (Red)
dev_set_color ('red')
if (Interactive)
    draw_region (Pattern, WindowID)
else
    gen_rectangle1 (Pattern, 362, 276, 371, 298)
endif
* Calculate the histogram of two-channel gray value images
histo_2dim (Pattern, Red, Blue, Histo2Dim)
threshold (Histo2Dim, Features, 1, 255)
* Close a region with a circular structuring element
closing_circle (Features, FeaturesClosed, 11.5)
dev_set_draw ('fill')
dev_set_part (0, 0, 511, 511)
dev_display (Red)
class_2dim_sup (Red, Blue, FeaturesClosed, RegionClass2Dim)
closing_rectangle1 (RegionClass2Dim, RegionClosing, 11, 11)
connection (RegionClosing, ConnectedRegions)
smallest_rectangle2 (ConnectedRegions, Row, Column, Phi, Length1, Length2)
gen_rectangle2 (Rectangles, Row, Column, Phi, Length1, Length2)
dev_display (Image)
dev_display (Rectangles)

相关推荐
hjs_deeplearning6 分钟前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体
瑶光守护者9 分钟前
【卫星通信】超低比特率语音编解码器(ULBC)的信道特性评估
深度学习·华为·卫星通信·3gpp·ulbc
kngines29 分钟前
【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
人工智能·数据挖掘·面试题
蓝婷儿2 小时前
Python 机器学习核心入门与实战进阶 Day 1 - 分类 vs 回归
python·机器学习·分类
程序员阿超的博客3 小时前
Python 数据分析与机器学习入门 (八):用 Scikit-Learn 跑通第一个机器学习模型
python·机器学习·数据分析·scikit-learn·入门教程·python教程
xingshanchang5 小时前
PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
人工智能·pytorch·python
reddingtons5 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK6 小时前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
hn小菜鸡6 小时前
LeetCode 377.组合总和IV
数据结构·算法·leetcode
Deepoch6 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机