基于特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测

本文采用特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测

基于BILSTM(双向长短期记忆网络)、随机森林回归和ARIMA(自回归积分滑动平均)模型的序列数据预测是一种综合运用多种机器学习和统计方法的预测策略。这种方法结合了BILSTM在处理长序列数据时的优势、随机森林在处理非线性关系时的能力以及ARIMA在处理时间序列数据的趋势和季节性方面的特点。 模型概述 BILSTM(双向长短期记忆网络):是一种改进的循环神经网络(RNN),能够有效处理长序列数据中的长期依赖关系。BILSTM通过在两个方向上处理数据,能够捕捉到序列中的前后文信息,从而提高预测的准确性。 随机森林回归:是一种基于决策树的集成学习方法,通过构建多个决策树并汇总它们的预测结果来提高预测的稳定性和准确性。随机森林能够处理非线性关系,并且对于噪声和缺失值具有较好的鲁棒性。 ARIMA(自回归积分滑动平均)模型:是一种广泛应用于时间序列分析和预测的统计模型。ARIMA模型通过自回归(AR)、差分(I)和滑动平均(MA)三个部分来拟合时间序列数据,能够有效捕捉数据的趋势、季节性和随机波动。

1.读取文件及预处理

2.特征与目标分离

3.特征工程:标准化、主成分分析

4.关联度分析

5.小波去噪

6.数据增强

7.定义模型

8.模型训练

9.计算评估

pca分析:

预测结果:

各项指标:

数据集为北京新冠疫情数据,需要源码请私信或评论

相关推荐
IT_陈寒9 分钟前
SpringBoot实战:这5个高效开发技巧让我节省了50%编码时间!
前端·人工智能·后端
比特森林探险记15 分钟前
Golang GMP 模型深度解析
网络·算法·golang
腾飞开源25 分钟前
《AI智能体实战开发教程(从0到企业级项目落地)》全网上线|CSDN & B站同步首发
人工智能·ai智能体开发·全网首发·新课上线·粉丝专属优惠·全完结·企业级项目落地
Python极客之家28 分钟前
基于数据挖掘的在线游戏行为分析预测系统
人工智能·python·机器学习·数据挖掘·毕业设计·课程设计
说私域30 分钟前
基于开源AI智能名片与链动2+1模式的S2B2C商城小程序研究:构建“信息找人”式精准零售新范式
人工智能·小程序·开源
嘀咕博客1 小时前
Kimi-Audio:Kimi开源的通用音频基础模型,支持语音识别、音频理解等多种任务
人工智能·音视频·语音识别·ai工具
坚持编程的菜鸟1 小时前
LeetCode每日一题——重复的子字符串
数据结构·算法·leetcode
Baihai_IDP1 小时前
GPU 网络基础,Part 2(MoE 训练中的网络挑战;什么是前、后端网络;什么是东西向、南北向流量)
人工智能·llm·gpu
AI人工智能+1 小时前
蒙古文识别技术:采用深度学习模型(CNN+RNN)处理蒙古文竖写特性,实现高精度识别
深度学习·ocr·蒙古文识别
Blacol1 小时前
【MCP】Caldav个人日程助手
人工智能·mcp