基于特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测

本文采用特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测

基于BILSTM(双向长短期记忆网络)、随机森林回归和ARIMA(自回归积分滑动平均)模型的序列数据预测是一种综合运用多种机器学习和统计方法的预测策略。这种方法结合了BILSTM在处理长序列数据时的优势、随机森林在处理非线性关系时的能力以及ARIMA在处理时间序列数据的趋势和季节性方面的特点。 模型概述 BILSTM(双向长短期记忆网络):是一种改进的循环神经网络(RNN),能够有效处理长序列数据中的长期依赖关系。BILSTM通过在两个方向上处理数据,能够捕捉到序列中的前后文信息,从而提高预测的准确性。 随机森林回归:是一种基于决策树的集成学习方法,通过构建多个决策树并汇总它们的预测结果来提高预测的稳定性和准确性。随机森林能够处理非线性关系,并且对于噪声和缺失值具有较好的鲁棒性。 ARIMA(自回归积分滑动平均)模型:是一种广泛应用于时间序列分析和预测的统计模型。ARIMA模型通过自回归(AR)、差分(I)和滑动平均(MA)三个部分来拟合时间序列数据,能够有效捕捉数据的趋势、季节性和随机波动。

1.读取文件及预处理

2.特征与目标分离

3.特征工程:标准化、主成分分析

4.关联度分析

5.小波去噪

6.数据增强

7.定义模型

8.模型训练

9.计算评估

pca分析:

预测结果:

各项指标:

数据集为北京新冠疫情数据,需要源码请私信或评论

相关推荐
CoderJia程序员甲18 分钟前
GitHub 热榜项目 - 日榜(2026-02-01)
人工智能·ai·大模型·github·ai教程
ValhallaCoder19 分钟前
hot100-矩阵
数据结构·python·算法·矩阵
散峰而望19 分钟前
【基础算法】穷举的艺术:在可能性森林中寻找答案
开发语言·数据结构·c++·算法·随机森林·github·动态规划
渡我白衣21 分钟前
【MySQL基础】(2):数据库基础概念
数据库·人工智能·深度学习·神经网络·mysql·机器学习·自然语言处理
心.c22 分钟前
Vue3+Node.js实现文件上传分片上传和断点续传【详细教程】
前端·javascript·vue.js·算法·node.js·哈希算法
散峰而望22 分钟前
【基础算法】算法的“预谋”:前缀和如何改变游戏规则
开发语言·数据结构·c++·算法·github·动态规划·推荐算法
We་ct22 分钟前
LeetCode 48. 旋转图像:原地旋转最优解法
前端·算法·leetcode·typescript
爱尔兰极光23 分钟前
LeetCode--长度最小的子数组
算法·leetcode·职场和发展
新缸中之脑24 分钟前
将CodeBERTa压缩到10KB以下
人工智能
仰泳的熊猫24 分钟前
题目1432:蓝桥杯2013年第四届真题-剪格子
数据结构·c++·算法·蓝桥杯·深度优先·图论