基于特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测

本文采用特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测

基于BILSTM(双向长短期记忆网络)、随机森林回归和ARIMA(自回归积分滑动平均)模型的序列数据预测是一种综合运用多种机器学习和统计方法的预测策略。这种方法结合了BILSTM在处理长序列数据时的优势、随机森林在处理非线性关系时的能力以及ARIMA在处理时间序列数据的趋势和季节性方面的特点。 模型概述 BILSTM(双向长短期记忆网络):是一种改进的循环神经网络(RNN),能够有效处理长序列数据中的长期依赖关系。BILSTM通过在两个方向上处理数据,能够捕捉到序列中的前后文信息,从而提高预测的准确性。 随机森林回归:是一种基于决策树的集成学习方法,通过构建多个决策树并汇总它们的预测结果来提高预测的稳定性和准确性。随机森林能够处理非线性关系,并且对于噪声和缺失值具有较好的鲁棒性。 ARIMA(自回归积分滑动平均)模型:是一种广泛应用于时间序列分析和预测的统计模型。ARIMA模型通过自回归(AR)、差分(I)和滑动平均(MA)三个部分来拟合时间序列数据,能够有效捕捉数据的趋势、季节性和随机波动。

1.读取文件及预处理

2.特征与目标分离

3.特征工程:标准化、主成分分析

4.关联度分析

5.小波去噪

6.数据增强

7.定义模型

8.模型训练

9.计算评估

pca分析:

预测结果:

各项指标:

数据集为北京新冠疫情数据,需要源码请私信或评论

相关推荐
weixin_429630264 分钟前
实验二-决策树-葡萄酒
算法·决策树·机器学习
说私域19 分钟前
“开源AI大模型AI智能名片S2B2C商城小程序”视角下的教育用户策略研究
人工智能·小程序
墨利昂24 分钟前
Transformer架构:深度学习序列建模的革命性突破
深度学习·架构·transformer
gddkxc44 分钟前
AI CRM中的数据分析:悟空AI CRM如何帮助企业优化运营
人工智能·信息可视化·数据分析
茉莉玫瑰花茶44 分钟前
floodfill 算法(dfs)
算法·深度优先
我是李武涯1 小时前
PyTorch Dataloader工作原理 之 default collate_fn操作
pytorch·python·深度学习
AI视觉网奇1 小时前
Python 检测运动模糊 源代码
人工智能·opencv·计算机视觉
东隆科技1 小时前
PRIMES推出SFM 2D全扫描场分析仪革新航空航天LPBF激光增材制造
人工智能·制造
无风听海1 小时前
神经网络之计算图repeat节点
人工智能·深度学习·神经网络
CoderCodingNo1 小时前
【GESP】C++五级考试大纲知识点梳理, (5) 算法复杂度估算(多项式、对数)
开发语言·c++·算法