基于特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测

本文采用特征工程(pca分析)、小波去噪以及数据增强,同时采用基于注意力机制的BiLSTM、随机森林、ARIMA模型进行序列数据预测

基于BILSTM(双向长短期记忆网络)、随机森林回归和ARIMA(自回归积分滑动平均)模型的序列数据预测是一种综合运用多种机器学习和统计方法的预测策略。这种方法结合了BILSTM在处理长序列数据时的优势、随机森林在处理非线性关系时的能力以及ARIMA在处理时间序列数据的趋势和季节性方面的特点。 模型概述 BILSTM(双向长短期记忆网络):是一种改进的循环神经网络(RNN),能够有效处理长序列数据中的长期依赖关系。BILSTM通过在两个方向上处理数据,能够捕捉到序列中的前后文信息,从而提高预测的准确性。 随机森林回归:是一种基于决策树的集成学习方法,通过构建多个决策树并汇总它们的预测结果来提高预测的稳定性和准确性。随机森林能够处理非线性关系,并且对于噪声和缺失值具有较好的鲁棒性。 ARIMA(自回归积分滑动平均)模型:是一种广泛应用于时间序列分析和预测的统计模型。ARIMA模型通过自回归(AR)、差分(I)和滑动平均(MA)三个部分来拟合时间序列数据,能够有效捕捉数据的趋势、季节性和随机波动。

1.读取文件及预处理

2.特征与目标分离

3.特征工程:标准化、主成分分析

4.关联度分析

5.小波去噪

6.数据增强

7.定义模型

8.模型训练

9.计算评估

pca分析:

预测结果:

各项指标:

数据集为北京新冠疫情数据,需要源码请私信或评论

相关推荐
海边夕阳20062 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
xlq223222 小时前
22.多态(上)
开发语言·c++·算法
666HZ6662 小时前
C语言——高精度加法
c语言·开发语言·算法
Wise玩转AI2 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
sweet丶2 小时前
iOS MMKV原理整理总结:比UserDefaults快100倍的存储方案是如何炼成的?
算法·架构
youcans_2 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭2 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT3 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"3 小时前
专项智能练习(课程类型)
人工智能